Polar Biology

, Volume 37, Issue 10, pp 1393–1412 | Cite as

Vegetation patterns, pollen deposition and distribution of non-pollen palynomorphs in an ice-wedge polygon near Kytalyk (NE Siberia), with some remarks on Arctic pollen morphology

  • Pim de KlerkEmail author
  • Annette Teltewskoi
  • Martin Theuerkauf
  • Hans Joosten
Original Paper


In ice-wedge polygon mires, small-scaled microrelief of ridges enclosing small depressions results in a short-distance vegetation mosaic. The correct recognition of these landscape elements in palaeoecological studies of peat sections in order to reconstruct their patterns and dynamics requires insight in the short-distance relationship between vegetation and pollen deposition. This paper presents an analysis of pollen surface samples in a high-resolution (1 m) transect across an ice-wedge polygon near Kytalyk (NE Siberia), including a discussion on the morphology of some critical pollen types and non-pollen palynomorphs (NPPs). We found a strong correlation between vegetation and surface elevation and a fair correspondence between pollen deposition and vegetation. Distribution of NPPs reflects surface elevation well, with algal spores dominating deep spots and testate amoebae prevailing on higher spots. Peak pollen/spore values unrelated to high species coverages (e.g. of Salix, Betula, Sphagnum, Poaceae) indicate that single plants within a population may cause the bulk of the pollen production. The absence of pollen of taxa with an important presence in the vegetation (e.g. Utricularia) must be attributable to low pollen productivity. Distributional patterns point at pollen transport by water in the polygon troughs/depressions. Our study shows that Arctic pollen records mainly reflect short-distance vegetation patterns. Palaeosequences consequently allow accurate reconstruction of local microtopography and its dynamics, but should not be over-interpreted in terms of changing (over)regional vegetation patterns and associated drivers.


Ice-wedge polygon mires NE Siberia Non-pollen palynomorphs (NPPs) Palynological surface samples Pollen/vegetation relationship Pollen morphology 



This paper is a contribution to the project “Polygons in tundra wetlands: state and dynamics under climate variability in polar regions (POLYGON)” financed by the Deutsche Forschungsgemeinschaft (DFG) by Grant Jo 332-14-1 to Hans Joosten. We thank Juliane Seyfert for assistance in the field, Sabine Kell for preparing the palynological samples, Stefan Goen and Dierk Michaelis for identifying the Sphagnum species, Martin Schrön and Dany Bunk for assisting in the preparation of Figs. 3 and 4, and Gao Yang for translating a Chinese publication. We are grateful to Adam Hölzer and the Staatliches Museum für Naturkunde in Karlsruhe for providing a working place for the palynological analysis. Furthermore, we thank the organisers and participants of the 2011 POLYGON Kytalyk expedition (cf. Pestryakova and Schirrmeister 2012) for logistic support and the pleasant ambiance. We are grateful to the editor of Polar Biology and three anonymous reviewers for valuable comments on the manuscript.

Supplementary material

300_2014_1529_MOESM1_ESM.pdf (3.7 mb)
Supplementary material Online Resource 1: De Klerk P, Niemeyer B, Raschke E, Savelieva L, Teltewskoi A, Theuerkauf M, Joosten H: Photographs of pollen grains from plants in NE Siberia (PDF 2414 kb)


  1. Andersen ST (1979) Identification of wild grass and cereal pollen. Danm Geol Unders Årbog 1978:69–92Google Scholar
  2. Andreev AA, Lubinski DJ, Bobrov AA, Ingólfsson Ó, Forman SL, Tarasov PE, Möller P (2008) Early Holocene environments on October Revolution Island, Severnaya Zemlya, Arctic Russia. Palaeogeogr Palaeoclimatol Palaeoecol 267:21–30. doi: 10.1016/j.palaeo.2008.05.002 Google Scholar
  3. Andreev AA, Morozova E, Fedorov G, Schirrmeister L, Bobrov AA, Kienast F, Schwamborn G (2012) Vegetation history of central Chukotka deduced from permafrost palaeoenvironmental records of the El’gygytgyn Impact Crater. Clim Past 8:1287–1300. doi: 10.5194/cp-8-1287-2012 Google Scholar
  4. Andrews JT, Nichols H (1981) Modern pollen deposition and Holocene paleotemperature reconstructions, Central Northern Canada. Arct Antarct Alp Res 13:387–408Google Scholar
  5. Avel-Niinemets E, Pensa M, Portsmuth A (2011) Distribution of testate amoebae along a gradient hummock-lawn-hollow in a Sphagnum bog: potential implications for palaeoecological reconstructions. Pol J Ecol 59:551–566Google Scholar
  6. Beretta M, Rodondi G, Adamec L, Andreis C (2014) Pollen morphology of European bladderworts (Utricularia L., Lentibulariaceae). Rev Palaeobot Palynol 205:22–30. doi: 10.1016/j.revpalbo.2014.02.009 Google Scholar
  7. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  8. Beyens L, Chardez D (1995) An annotated list of testate amoebae observed in the Arctic between the longitudes 27° E and 168° W. Arch Protistenkunde 146:219–233. doi: 10.1016/S0003-9365(11)80114-4 Google Scholar
  9. Beyens L, Chardez D, De Landtsheer R, De Bock P, Jacques E (1986) Testate amoebae populations from moss and lichen habitats in the Arctic. Polar Biol 5:165–173. doi: 10.1007/BF00441698 Google Scholar
  10. Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108(D19):8170. doi: 10.1029/2002JD002558 Google Scholar
  11. Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat Sci Rev 6:165–177. doi: 10.1016/S0277-3791(00)90007-6 Google Scholar
  12. Billings WD, Peterson KM (1980) Vegetational change and ice-wedge polygons through the thaw-lake cycle in arctic Alaska. Arct Alp Res 12:413–432Google Scholar
  13. Birks HJB (1977) Modern pollen rain and vegetation of the St. Elias Mountains, Yukon Territory. Can J Bot 55:2367–2382. doi: 10.1139/b77-270 Google Scholar
  14. Birks HJB (1980) Modern pollen assemblages and vegetation history of the moraines of the Klutlan glacier and its surroundings, Yukon Territory, Canada. Quat Res 14:101–129Google Scholar
  15. Bobrov AA, Wetterich S, Beermann F, Schneider A, Kokhanova L, Schirrmeister L, Pestryakova LA, Herzschuh U (2013) Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia). Polar Biol 36:857–870. doi: 10.1007/s00300-013-1311-y Google Scholar
  16. Boch MS (1974) Bolota tundrovoy zony Sibiri (printsipy tipologii). In: Abramova TG (ed) Tipy bolot SSSR I printsipy ikh klassifikatsii. Nauka, Leningrad, pp 146–154Google Scholar
  17. Booth RK (2001) Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for palaeoecology and environmental monitoring. Wetlands 21(4):564–576. doi:10.1672/0277-5212(2001)021[0564:EOTAPI]2.0.CO;2Google Scholar
  18. Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:329–348Google Scholar
  19. Bos JAA, Janssen CR (1996) Local impact of Palaeolithic man on the environment during the end of the last glacial in the Netherlands. J Archaeol Sci 23:731–739. doi: 10.1006/jasc.1996.0069 Google Scholar
  20. Botch MS, Masing VV (1983) Mire ecosystems in the U.S.S.R. In: Gore AJP (ed) Mires: swamp, bog, fen and moor. Ecosystems of the world 4b. Elsevier, Amsterdam, pp 95–152Google Scholar
  21. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Quaternary Research Association, LondonGoogle Scholar
  22. Charman DJ, Blundell A, ACCROTELM members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221. doi: 10.1002/jqs.1026 Google Scholar
  23. Chernov YI, Matveyeva NV (1997) Arctic ecosystems in Russia. In: Wielgolaski FE (ed) Polar and alpine tundra. Ecosystems of the world 3. Elsevier, Amsterdam, pp 361–507Google Scholar
  24. Clarke KJ (2003) Guide to the identification of soil protozoa – testate amoebae. Freshwater Biological Association/The Ferry House, Far Sawrey/Ambleside/CumbriaGoogle Scholar
  25. Czerepanov SK (1995) Vascular plants of Russia and adjacent states (the former USSR). Cambridge University Press, CambridgeGoogle Scholar
  26. De Klerk P (2004) Confusing concepts in Lateglacial stratigraphy and geochronology: origin, consequences, conclusions (with special emphasis on the type locality Bøllingsø). Rev Palaeobot Palynol 129:265–298. doi: 10.1016/j.revpalbo.2004.02.006 Google Scholar
  27. De Klerk P, Joosten H (2007) The difference between pollen types and plant taxa: a plea for clarity and scientific freedom. Eiszeitalt Ggw 56:162–171. doi: 10.3285/eg.56.3.02 Google Scholar
  28. De Klerk P, Janssen CR, Joosten JHJ, Törnqvist TE (1997) Species composition of an alluvial hardwood forest in the Dutch fluvial area under natural conditions (2700 cal year BP). Acta Bot Neerl 46:131–146Google Scholar
  29. De Klerk P, Helbig H, Janke W (2008) Vegetation and environment in and around the Reinberg basin (Vorpommern, NE Germany) during the Weichselian late Pleniglacial, Lateglacial, and Early Holocene. Acta Palaeobot 48:301–324Google Scholar
  30. De Klerk P, Donner N, Joosten H, Karpov NS, Minke M, Seifert N, Theuerkauf M (2009) Vegetation patterns, recent pollen deposition and distribution of non-pollen palynomorphs in a polygon mire near Chokurdakh (NE Yakutia, NE Siberia). Boreas 38:39–58. doi: 10.1111/j.1502-3885.2008.00036.x Google Scholar
  31. De Klerk P, Donner N, Karpov NS, Minke M, Joosten H (2011) Short-term dynamics of a low-centred ice wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quat Sci Rev 30:3013–3031. doi: 10.1016/j.quascirev.2011.06.016 Google Scholar
  32. Donner N, Minke M, De Klerk P, Sofronov R, Joosten H (2012) Patterns in polygon mires in north-eastern Yakutia, Siberia: the role of vegetation and water. Finn Env 38:19–30Google Scholar
  33. Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol 12:2336–2351. doi: 10.1111/j.1365-2486.2006.01259.x Google Scholar
  34. Eisner WR, Peterson KM (1998a) High-resolution pollen analysis of tundra polygons from the North Slope of Alaska. J Geophys Res 103:28929–28937. doi: 10.1029/98JD01462 Google Scholar
  35. Eisner WR, Peterson KM (1998b) Pollen, fungi and algae as age indicators of drained lake basins near Barrow, Alaska. Collect Nord 55:245–250Google Scholar
  36. Eisner WR, Bockheim JG, Hinkel KM, Brown TA, Nelson FE, Peterson KM, Jones BM (2005) Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska. Palaeogeogr Palaeoclimatol Palaeoecol 217:187–204. doi: 10.1016/j.palaeo.2004.11.025 Google Scholar
  37. Fægri K, Iversen J (1989) Textbook of pollen analysis (revised by Fægri K, Kaland PE, Krzywinski K). Wiley, ChichesterGoogle Scholar
  38. Frey W, Frahm JP, Fischer E, Lobin W (1995) Die Moos- und Farnpflanzen Europas. Fischer, StuttgartGoogle Scholar
  39. Grospietsch T (1972) Wechseltierchen (Rhizopoden). Kosmos/Frankckh’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  40. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298. doi: 10.1007/s10584-005-5352-2 Google Scholar
  41. Hooghiemstra H, Van Geel B (1998) World list of quaternary pollen and spore atlases. Rev Palaeobot Palynol 104:157–182. doi: 10.1016/S0034-6667(98)00053-0 Google Scholar
  42. Janssen CR (1973) Local and regional pollen deposition. In: Birks HJB, West RG (eds) Quaternary plant ecology. 14th symposium of the British Ecological Society. Blackwell, Oxford, pp 31–42Google Scholar
  43. Janssen CR, Braber FI, Bunnik FPM, Delibrias G, Kalis AJ, Mook WG (1985) The significance of chronology in the ecological interpretation pollen assemblages of contrasting sites in the Vosges. Ecol Mediter 11:39–43Google Scholar
  44. Joosten H, De Klerk P (2002) What’s in a name? Some thoughts on pollen classification, identification, and nomenclature in Quaternary palynology. Rev Palaeobot Palynol 122:29–45. doi: 10.1016/S0034-6667(02)00090-8 Google Scholar
  45. Klemm J, Herzschuh U, Pisaric MFJ, Telford RJ, Heim B, Pestryakova LA (2013) A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeogr Palaeoclimatol Palaeoecol 386:702–713. doi: 10.1016/j.palaeo.2013.06.033 Google Scholar
  46. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–14774. doi: 10.1073/pnas.1103910108 PubMedPubMedCentralGoogle Scholar
  47. Kuhry P, Dorrepaal E, Hugelius G, Schuur EAG, Tarnocai C (2010) Potential remobilization of belowground permafrost carbon under future global warming. Permafrost Periglac 21:208–214. doi: 10.1002/ppp.684 Google Scholar
  48. Lal R, Kimble JM (2000) Soil C pool and dynamics in cold ecoregions. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and cold regions ecosystems. Lewis Publishers, Boca Raton, pp 3–28Google Scholar
  49. Lamb HF (1984) Modern pollen spectra from Labrador and their use in reconstructing Holocene vegetational history. J Ecol 72:37–59. doi: 10.2307/2260005 Google Scholar
  50. Lara E, Heger TJ, Scheihing R, Mitchell EAD (2011) COI gene and ecological data suggest size-dependent high dispersal and low intra-specific diversity in free-living terrestrial protists (Euglyphida: Assulina). J Biogeogr 38:640–650. doi: 10.1111/j.1365-2699.2010.02426.x Google Scholar
  51. Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64. doi: 10.1007/BF00055300 Google Scholar
  52. Lozhkin AV, Anderson PM, Vartanyan SL, Brown TA, Belaya BV, Kotov AN (2001) Late quaternary paleoenvironments and modern pollen data from Wrangel Island (northern Chukotka). Quat Sci Rev 20:217–233. doi: 10.1016/S0277-3791(00)00121-9 Google Scholar
  53. Mackay JR (2000) Thermally induced movements in ice-wedge polygons, Western Arctic Coast: a long-term study. Géogr Phys Quatern 54:41–68. doi: 10.7202/004846ar Google Scholar
  54. Mäkelä EM (1996) Size distinctions between Betula pollen types—a review. Grana 35:248–256. doi: 10.1080/00173139609430011 Google Scholar
  55. Mazei YA, Tsyganov AN (2007) Species composition, spatial distribution and seasonal dynamics of testate amoebae community in a sphagnum bog (Middle Volga region, Russia). Prostitology 5:156–206Google Scholar
  56. McGuire AD, Chapin FS III, Wirth C, Apps M, Bhatti J, Callaghan TV, Christensen TR, Clein JS, Fukuda M, Maximov T, Onuchin A, Shvidenko A, Vaganov E (2007) Responses of high latitude ecosystems to global change: potential consequences for the climate system. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, London, pp 297–310Google Scholar
  57. Michaelis D (2011) Die Sphagnum-Arten der Welt. Bibl Bot 160:1–408Google Scholar
  58. Mieczan T (2012) Distributions of testate amoebae and ciliates in different types of peatlands and their contributions to the nutrient supply. Zool Stud 51:18–26Google Scholar
  59. Minke M, Donner N, Karpov NS, De Klerk P, Joosten H (2007) Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatlands Int 2007(1):36–40Google Scholar
  60. Minke M, Donner N, Karpov N, De Klerk P, Joosten H (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafrost Periglac 20:357–368. doi: 10.1002/ppp.663 Google Scholar
  61. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137. doi: 10.1007/s10531-007-9221-3 Google Scholar
  62. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  63. Morgenstern A, Grosse G, Günther F, Fedorova I, Schirrmeister L (2011) Spatial analyses of thermokarst lakes and basins in yedoma landscapes of the Lena Delta. Cryosphere 5:849–867. doi: 10.5194/tc-5-849-2011 Google Scholar
  64. Morgenstern A, Ulrich M, Günther F, Roessler S, Fedorova IV, Rudaya NA, Wetterich S, Boike J, Schirrmeister L (2013) Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201:363–379. doi: 10.1016/j.geomorph.2013.07.011 Google Scholar
  65. Pals JP, Van Geel B, Delfos A (1980) Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord Holland). Rev Palaeobot Palynol 30:371–418Google Scholar
  66. Payne RJ, Kishaba K, Blackford JJ, Mitchell EAD (2006) Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. Holocene 16:403–414. doi: 10.1191/0959683606hl936rp Google Scholar
  67. Payne RJ, Lamentowicz M, Van der Knaap WO, Van Leeuwen JFN, Mitchell EAD, Mazei Y (2012) Testate amoebae in pollen slides. Rev Palaeobot Palynol 173:68–79. doi: 10.1016/j.revpalbo.2011.09.006 Google Scholar
  68. Pestryakova L, Schirrmeister L (2012) Introduction. Ber Polarforsch Meeresforsch 653:1–4.
  69. Petrescu AMR, Van Huissteden J, Jackowicz-Korczynski M, Yurova A, Christensen TR, Crill PM, Bäckstrand K, Maximov TC (2008) Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization. Biogeosciences 5:111–121. doi: 10.5194/bg-5-111-2008 Google Scholar
  70. Polunin N (1959) Circumpolar Arctic flora. Clarendon Press, OxfordGoogle Scholar
  71. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159. doi: 10.1038/298156a0 Google Scholar
  72. Punt W (ed) (1976) The Northwest European pollen flora I. Elsevier, AmsterdamGoogle Scholar
  73. Punt W, Blackmore S (eds) (1991) The Northwest European pollen flora VI. Elsevier, AmsterdamGoogle Scholar
  74. Punt W, Clarke GCS (eds) (1980) The Northwest European pollen flora II. Elsevier, AmsterdamGoogle Scholar
  75. Punt W, Clarke GCS (eds) (1981) The Northwest European pollen flora III. Elsevier, AmsterdamGoogle Scholar
  76. Punt W, Clarke GCS (eds) (1984) The Northwest European pollen flora IV. Elsevier, AmsterdamGoogle Scholar
  77. Punt W, Blackmore S, Clarke GCS (eds) (1988) The Northwest European pollen flora V. Elsevier, AmsterdamGoogle Scholar
  78. Punt W, Hoen PP, Blackmore S (eds) (1995) The Northwest European pollen flora VII. Elsevier, AmsterdamGoogle Scholar
  79. Punt W, Blackmore S, Hoen PP, Stafford PJ (eds) (2003) The Northwest European pollen flora VIII. Elsevier, AmsterdamGoogle Scholar
  80. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81. doi: 10.1016/j.revpalbo.2006.06.008
  81. Qin Y, Payne RJ, Gu Y, Huang X, Wang H (2012) Ecology of testate amoebae in Dajiuhu peatland of Shennongjia Mountains, China, in relation to hydrology. Front Earth Sci 6:57–65. doi: 10.1007/s11707-012-0307-1 Google Scholar
  82. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Accessed 20 April 2014
  83. Rothmaler W (2002) Exkursionsflora von Deutschland Gefäßpflanzen: Grundband. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  84. Savelieva LA, Dorozhkina MV, Pavlova EYu (2000) Modern annual deposition and aerial pollen transport in the Lena Delta. Polarforsch 70:115–122Google Scholar
  85. Savelieva LA, Raschke EA, Titova DV (2013) Photographic atlas of plants and pollen of the Lena River Delta. St-Petersburg State University, St-PetersburgGoogle Scholar
  86. Schirrmeister L, Froese D, Tumskoy V, Grosse G, Wetterich S (2013) Yedoma: late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias SA (ed) Encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 542–552Google Scholar
  87. Schönborn W, Peschke T (1988) Biometric studies on species, races, ecophenotypes and individual variations of soil-inhabiting testaceae (Protozoa, Rhizopoda), including Trigonopyxis minuta n. sp. and Corythion asperulum n. sp. Arch Protistenkd 136:345–363Google Scholar
  88. Schönborn W, Peschke T (1990) Evolutionary studies on the Assulina-Valkanovia complex (Rhizopoda, Testaceafilosia) in Sphagnum and soil. Biol Fertil Soils 9:95–100. doi: 10.1007/BF00335790 Google Scholar
  89. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  90. Tang L, Zhou Z, Zhang X, Zhang Q (2003) Study on pollen morphology of tundra plans from Barrow, Arctic (in Chinese with English abstract). Chin J Polar Res 15:45–52Google Scholar
  91. Tarasov PE, Andreev AA, Anderson PM, Lozhkin AV, Leipe C, Haltia E, Nowaczyk NR, Wennrich V, Brigham-Grette J, Melles M (2013) A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic—new insights into climate-vegetation relationships at the regional scale. Clim Past 9:2759–2775. doi: 10.5194/cp-9-2759-2013 Google Scholar
  92. Tarnocai C (1999) The effect of climate warming on the carbon balance of cryosols in Canada. Permafrost Periglac 10:251–263. doi: 10.1002/(SICI)1099-1530(199907/09)10:3<251:AID-PPP323>3.0.CO;2-5 Google Scholar
  93. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova, G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. doi: 10.1029/2008GB003327
  94. Teltewskoi A, Seyfert J, Joosten H (2012) Records from the model polygon Lhc-11 for modern and palaeoecological studies. Ber Polarforsch Meeresforsch 653:51–60.
  95. Tolmachev AI (1974) Opredelitel’ vysshikh rasteniy Yakutii. Nauka, NovosibirskGoogle Scholar
  96. Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 645–666Google Scholar
  97. Tumskoy V, Schirrmeister L (2012) Study area, geological and geographical characteristics. Ber Polarforsch Meeresforsch 653:5–10.
  98. Van der Knaap WO (1990) Relations between present-day pollen deposition and vegetation in Spitsbergen. Grana 29:63–78. doi: 10.1080/00173139009429977 Google Scholar
  99. Van der Molen MK, Van Huissteden J, Parmentier FJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, Suzdalov DA (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4:985–1003. doi: 10.5194/bg-4-985-2007 Google Scholar
  100. Van Geel B (1976) Fossil spores of Zygnemataceae in ditches of a prehistoric settlement in Hoogkarspel (The Netherlands). Rev Palaeobot Palynol 22:337–344Google Scholar
  101. Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120. doi: 10.1016/0034-6667(78)90040-4 Google Scholar
  102. Van Geel B (1986) Application of fungal and algal remains and other microfossils in palynological analyses. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 497–505Google Scholar
  103. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 99–119Google Scholar
  104. Van Geel B, Grenfell HR (1996) Green and blue-green algae 7A—spores of Zygnemataceae. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. AASP 1:173–179Google Scholar
  105. Van Geel B, Bohncke SJP, Dee H (1981) A palaeoecological study of an upper late Glacial and Holocene sequence from “De Borchert”, the Netherlands. Rev Palaeobot Palynol 31:367–448. doi: 10.1016/0034-6667(80)90035-4 Google Scholar
  106. Vasil’chuk AK (2005) Regional and extra-local pollen in tundra pollen samples. Biol Bull 32(75–84). doi: 10.1007/s10525-005-0012-7
  107. Washburn AL (1979) Geocryology. A survey of periglacial processes and environments. Edward Arnold, LondonGoogle Scholar
  108. Whitmore J, Gajewski K, Sawada M, Williams JW, Shuman B, Bartlein PJ, Minckley T, Viau AE, Webb T III, Shafer S, Anderson P, Brubaker L (2005) Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications. Quat Sci Rev 24:1828–1848. doi: 10.1016/j.quascirev.2005.03.005 Google Scholar
  109. Yao Y, Zhao Q, Bera S, Li X, Li C (2012) Pollen morphology of selected tundra plants from the high Arctic of Ny-Ålesund, Svalbard. Adv Polar Sci 23:103–115. doi: 10.3724/SP.J.1085.2012.00103 Google Scholar
  110. Zhang X, Tang L, Zhou Z, Zhang Q (2004) A study on pollen morphology of tundra plants from Barrow, Arctic. Acta Micropal Sin 21:44–52Google Scholar
  111. Zhu X, Zhuang Q, Gao X, Sokolov A, Schlosser CA (2013) Pan-Arctic land-atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century. Environ Res Lett 8:045003. doi: 10.1088/1748-9326/8/4/045003 Google Scholar
  112. Zibulski R, Herzschuh U, Pestryakova LA, Wolter J, Müller S, Schilling N, Wetterich S, Schirrmeister L, Tian F (2013) River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia). Biogeosci Discuss 10:4067–4125. doi: 10.5194/bgd-10-4067-2013 Google Scholar
  113. Zoltai SC, Tarnocai C (1975) Perennially frozen peatlands in the western arctic and subarctic of Canada. Can J Earth Sci 12:28–43. doi: 10.1139/e75-004 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pim de Klerk
    • 1
    • 3
    Email author
  • Annette Teltewskoi
    • 1
  • Martin Theuerkauf
    • 2
  • Hans Joosten
    • 1
  1. 1.Institute of Botany and Landscape EcologyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  2. 2.Institute of Geography and GeologyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  3. 3.Staatliches Museum für Naturkunde KarlsruheKarlsruheGermany

Personalised recommendations