Polar Biology

, Volume 37, Issue 9, pp 1221–1233 | Cite as

Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica

  • Roberto GuidettiEmail author
  • Lorena Rebecchi
  • Michele Cesari
  • Sandra J. McInnes
Original Paper


Despite the importance and regular occurrence of tardigrades in the Antarctic terrestrial ecosystem, taxonomic studies of, in particular, continental Antarctica species have advanced very slowly. During a large survey to study tardigrade biodiversity along the Victoria Land coastal line, a new species was found belonging to the rare heterotardigrade genus Mopsechiniscus. The new species Mopsechiniscus franciscae is described using an integrative taxonomy approach, combining morphological description (with light and electron microscopy techniques) and molecular characterisation (analysing portions of the 18S and 28S genes). The new species differed from other congeners by clear morphological characters related to shape and sculpture of cuticular plates, presence of papillae on legs, and length and number of body filaments. The results of the combined (18S + 28S) phylogenetic analyses (Bayesian and maximum likelihood) on Echiniscoidea indicate two main lineages: one incorporating the genus Echiniscoides (Echiniscoididae) and the other the current data on Echiniscidae and Oreellidae genera. Although the resolution of relationships within the latter line is not clear, there is a well-defined evolutionary line for Mopsechiniscus. The addition of continental Antarctic M. franciscae sp. nov. to the genus broadened the distributional range of Mopsechiniscus southwards and supported the hypothesis that the genus represents a Gondwanan faunal element. Our report of a new Antarctic species, belonging to this rare heterotardigrade genus, increases our knowledge of the underreported terrestrial meiofaunal communities within continental Antarctica.


Echiniscidae Echiniscoidea Gondwanan Heterotardigrada Phylogeny Victoria Land 



The authors thank the Laboratory of Sequencing (Labgen), Department of Life Sciences, University of Modena and Reggio Emilia (Italy), for the sequencing service and the anonymous reviewers for their suggestions. The research is part of the project “Adaptive strategies to maintain biodiversity: cryptobiosis and thermotolerance in Antarctic tardigrades”, supported by Programma Nazionale Ricerche in Antartide—Ministero dell’Istruzione dell’Università e della Ricerca.


  1. Adams BJ, Bardgett RD, Ayres C et al (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Bertolani R, Biserov V, Rebecchi L, Cesari M (2011) Taxonomy and biogeography of tardigrades using an integrated approach: new results on species of the Macrobiotus hufelandi group. Invertebr Zool 8:23–36Google Scholar
  3. Binda MG, Pilato G (1994) Macrobiotus mottai, nuova specie di eutardigrado dell’Antartide. Animalia 21:53–56Google Scholar
  4. Binda MG, Pilato G (2000) Diphascon (Adropion) tricuspidatum, a new species of eutardigrade from Antarctica. Polar Biol 23:75–76CrossRefGoogle Scholar
  5. Cathey DD, Parker BC, Simmons GM Jr, Yongue WH Jr, Van Brunt MR (1981) The microfauna of algal mats and artificial substrates in southern Victoria Land lakes of Antarctica. Hydrobiologia 85:3–16CrossRefGoogle Scholar
  6. Cesari M, Bertolani R, Rebecchi L, Guidetti R (2009) DNA barcoding in Tardigrada: the first case study on Macrobiotus macrocalix (Eutardigrada, Macrobiotidae). Mol Ecol Resour 9:699–706PubMedCrossRefGoogle Scholar
  7. Claps MC, Rossi GC, Ardohain DM (2008) Tardigrada. In: Claps LE, Debandi G, Roigjuñent S (eds) Biodiversidad de Artrópodos Argentinos, vol 2. Sociedad Entomológica Argentina, La Plata, pp 63–77Google Scholar
  8. Claxton SK (1996) Sexual dimorphism in Australian Echiniscus (Tardigrada, Echiniscidae) with descriptions of three new species. Zool J Linn Soc 116:13–33CrossRefGoogle Scholar
  9. Convey P (2001) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184Google Scholar
  10. Convey P, McInnes S (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–527CrossRefGoogle Scholar
  11. Dastych H (1984) The Tardigrada from Antarctica with descriptions of several new species. Acta Zool Crac 27:377–436Google Scholar
  12. Dastych H (1987) Two new species of Tardigrada from the Canadian Subarctic with some notes on sexual dimorphism in the family Echiniscidae. Entomol Mitt Zool Mus Hambg 8:319–334Google Scholar
  13. Dastych H (1999a) A new species of the genus Mopsechiniscus Du Bois-Reymond Marcus, 1944 (Tardigrada) from the Venuezelan Andes. Acta Biol Benrodis 10:91–101Google Scholar
  14. Dastych H (1999b) Mopsechiniscus frenoti sp. n., a new water-bear (Tardigrada) from Îles Crozet, the Sub-Antarctic. Entomol Mitt Zool Mus Hambg 13:49–57Google Scholar
  15. Dastych H (1999c) Redescription of the Sub-Antarctic tardigrade Mopsechiniscus imberbis (Richters, 1908) (Tardigrada). Mitt Hambg Zool Mus Inst 96:21–35Google Scholar
  16. Dastych H (2000) Redescription of the neotropical tardigrade Mopsechiniscus granulosus Mihelcic, 1967 (Tardigrada). Mitt Hambg Zool Mus Inst 97:45–57Google Scholar
  17. Dastych H (2001) Notes on the revision of the genus Mopsechiniscus (Tardigrada). Zool Anz 240:299–308CrossRefGoogle Scholar
  18. Dastych H, Moscal AM (1992) Mopsechiniscus tasmanicus sp. n., a new semiterrestrial Tardigrada. Entomol Mitt Zool Mus Hambg 10:221–228Google Scholar
  19. Dougherty EC, Harris LG (1963) Antarctic micrometazoa: fresh-water species in the McMurdo Sound area. Science 140:497–498PubMedCrossRefGoogle Scholar
  20. Giribet G, Carranza S, Baguñá J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 13:76–84PubMedCrossRefGoogle Scholar
  21. Grigarick AA, Schuster RO, Nelson DR (1983) Heterotardigrada of Venezuela (Tardigrada). Pan Pac Entomol 59:64–77Google Scholar
  22. Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. J Insect Physiol 57:567–576PubMedCrossRefGoogle Scholar
  23. Guidetti R, Bertolani R, Rebecchi L (2013a) Comparative analysis of the tardigrade feeding apparatus: adaptive convergence and evolutionary pattern of the piercing stylet system. J Limnol 72:24–35Google Scholar
  24. Guidetti R, Peluffo JR, Rocha AM, Cesari M, De Moly Peluffo MC (2013b) The morphological and molecular analyses of a new South American urban tardigrade offer new insights on the biological meaning of the Macrobiotus hufelandi group of species (Tardigrada: Macrobiotidae). J Nat Hist 47:2409–2426CrossRefGoogle Scholar
  25. Guil N, Giribet G (2012) A comprehensive molecular phylogeny of tardigrades: adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 28:21–49CrossRefGoogle Scholar
  26. Guil N, Jørgensen A, Giribet G, Kristensen RM (2013) Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada). Zool J Linn Soc 169:713–736CrossRefGoogle Scholar
  27. Janetschek H (1967) Arthropod ecology of south Victoria Land. Antarct Res Ser 10:205–293Google Scholar
  28. Jørgensen A, Møbjerg N, Kristensen RM (2011) Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada)—an investigation of the congruence between molecules and morphology. J Zool Syst Evol Res 49:6–16CrossRefGoogle Scholar
  29. Kristensen RM (1987) Generic revision of the Echiniscidae (Heterotardigrada), with a discussion on the origin of the family. In: Bertolani R (ed) Biology of tardigrades. Selected symposia and mongraphs U.Z.I, vol 1. Mucchi, Modena, pp 261–335Google Scholar
  30. McInnes SJ (1994) Zoogeographic distribution of terrestrial/freshwater tardigrades from current literature. J Nat Hist 28:257–352CrossRefGoogle Scholar
  31. McInnes SJ (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Elsworth Land, Antarctica. Polar Biol 33:59–70CrossRefGoogle Scholar
  32. Miller WR, Claxton SK, Heatwole HF (1999) Tardigrades of the Australian Antarctic territories: males in the genus Echiniscus (Tardigrada: Heterotardigrada). Zool Anz 238:303–309Google Scholar
  33. Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments—on the current knowledge of adaptations in tardigrades. Acta Physiol 202:409–420CrossRefGoogle Scholar
  34. Murray J (1910) Tardigrada. British Antarctic expedition 1907–9. Reports on the scientific investigations. Biology, vol 1, part V:83–187Google Scholar
  35. Nelson D, Guidetti R, Rebecchi L (2010) Tardigrada. 14. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates, 4th edn. Academic Press (Elsevier), San Diego, pp 455–484CrossRefGoogle Scholar
  36. Pilato G, Binda MG (1990) Tardigradi dell’Antartide. I. Ramajendas, nuovo genere di eutardigrado. Nuovo posizione sistematica di Hypsibius renaudi Ramazzotti, 1972 e descrizione di Ramajendas frigidus n. sp. Animalia 17:61–71Google Scholar
  37. Pilato G, Binda MG (1999) Three new species of Diphascon of the pingue group (Eutardigrada Hypsibiidae) from Antarctica. Polar Biol 21:335–342CrossRefGoogle Scholar
  38. Posada D (2008) ModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  39. Rambaut A, Drummond AJ (2007) Tracer v1.5. Accessed 8 Dec 2013
  40. Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. Inv Surv J 4:65–81Google Scholar
  41. Richters F (1909) Tardigraden unter 77°S. Br Zool Anz 34:604–606Google Scholar
  42. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedCentralPubMedCrossRefGoogle Scholar
  43. Smykla J, Iakovenko N, Devetter M, Kaczmarek L (2012) Diversity and distribution of tardigrades in soils of Edmonson Point (Northern Victoria Land, continental Antarctica). Czech Polar Rep 2:61–70CrossRefGoogle Scholar
  44. Spurr B (1975) Limnology of Bird Pond, Ross Island, Antarctica. N Z J Mar Freshw Res 9:547–562CrossRefGoogle Scholar
  45. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  46. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771PubMedCrossRefGoogle Scholar
  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wełnicz W, Grohme MA, Kaczmarek Ł, Schill RO, Frohme M (2011) Anhydrobiosis in tardigrades-the last decade. J Insect Physiol 57:577–583PubMedCrossRefGoogle Scholar
  49. Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roberto Guidetti
    • 1
    Email author
  • Lorena Rebecchi
    • 1
  • Michele Cesari
    • 1
  • Sandra J. McInnes
    • 2
  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations