Polar Biology

, Volume 37, Issue 8, pp 1197–1208 | Cite as

Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling

  • C. ColesieEmail author
  • T. G. A. Green
  • R. Türk
  • I. D. Hogg
  • L. G. Sancho
  • B. Büdel
Original Paper


Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.


Lichens Biogeography Microclimate Diamond Hill Bioclimatic envelope Antarctic biodiversity 



We are grateful to Antarctica New Zealand (AntNZ) for logistical support over several years as part of the LGP coordinated by Shulamit Gordon. Logistics support was also provided by the Australian Antarctic Programme, the Spanish National Antarctic Program and the US Coastguard Reserve. The University of Waikato Vice Chancellor’s Fund and the Department of Biological Sciences, University of Waikato provided financial assistance with field costs. The research was supported by the New Zealand MBIE grant, “Understanding, valuing and protecting Antarctica’s unique terrestrial ecosystems: predicting biocomplexity in Dry Valley ecosystems,” and TGAG by the Spanish Education Ministry Grants Nos. POL2006-08405 and CTM2009-12838-C04-01. BB and CC acknowledge the DFG Schwerpunktprogramm 1158 (BU 666/11-1). Thanks to O. Breuss for the identification of Verrucaria species, to U. Ruprecht, and to H. Reichenberger for field support. We thank Dr. A. Fountain for making available the microclimate data from Lake Fryxell (Lake Fryxell Meteorological Station Measurements, knb-lter-mcm. 7010.7). Special thanks to Dr. R. Wirth for support with the statistical analyses and to two anonymous reviewers for their helpful and constructive comments on the manuscript.


  1. Adams BJ, Bardgett RD, Ayres E et al (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Aislabie JM, Lau A, Dsouza M, Sheperd C, Rhodes P, Turner SJ (2013) Bacterial composition of soils of Lake Wellman area, Darwin Mountains, Antarctica. Extremophiles 17:775–786PubMedCrossRefGoogle Scholar
  3. Barrett JE, Virginia RA, Hopkins DW et al (2006) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019–3034CrossRefGoogle Scholar
  4. Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335CrossRefGoogle Scholar
  5. Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud 38:95–112CrossRefGoogle Scholar
  6. Bromwich DH, Guo Z (2004) Modelled Antarctic precipitation. Part I: spatial and temporal variability. J Clim 17:427–447CrossRefGoogle Scholar
  7. Campbell IB, Claridge GGC (1982) The influence of moisture on the development of soils of the cold deserts of Antarctica. Geoderma 28:221–238CrossRefGoogle Scholar
  8. Cannone N, Convey P, Guglielmin M (2013) Diversity trends of bryophytes in continental Antarctica. Polar Biol 36:259–271CrossRefGoogle Scholar
  9. Cary SC, McDonald R, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138Google Scholar
  10. Castello C (2003) Lichens of the Terra Nova Bay area, Northern Victoria Land (continental Antarctica). Stud Geobot 22:3–54Google Scholar
  11. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  12. Colesie C, Gommeaux M, Green TGA, Büdel B (2013) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123CrossRefGoogle Scholar
  13. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8. Persistent. Accessed 25 July 2013
  14. De Frenne P, Graae BJ, Rodriguez-Sanchez F, Kolb A, Chaberrie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795CrossRefGoogle Scholar
  15. Demetras NJ, Hogg ID, Banks JC, Adams BJ (2010) Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarct Sci 22:749–756CrossRefGoogle Scholar
  16. Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, StuttgartGoogle Scholar
  17. Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971CrossRefGoogle Scholar
  18. Freckman DW, Virginia RA (1997) Low diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369CrossRefGoogle Scholar
  19. Green TGA, Sancho LG, Pintado A, Schroeter B (2011a) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656CrossRefGoogle Scholar
  20. Green TGA, Sancho LG, Türk R, Seppelt RD, Hogg ID (2011b) High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biol 34:1211–1220CrossRefGoogle Scholar
  21. Green TGA, Brabyn L, Beard C, Sancho LG (2012) Extremely low lichen growth rates in Taylor Valley, Dry Valleys, continental Antarctica. Polar Biol 35:535–541CrossRefGoogle Scholar
  22. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–322CrossRefGoogle Scholar
  23. Heinkinnen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777CrossRefGoogle Scholar
  24. Hogg ID, Cary CS, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040CrossRefGoogle Scholar
  25. Howard-Williams C, Peterson D, Lyons WB, Cattaneo-Vietti R, Gordon S (2006) Measuring ecosystem response in a rapidliy changing environment: the Latitudinal Gradient Project. Antarct Sci 18:465–471CrossRefGoogle Scholar
  26. Howard-Williams C, Hawes I, Gordon S (2010) The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project. Antarct Sci 22:591–602CrossRefGoogle Scholar
  27. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arc Antarct Alp Res 25:308–315CrossRefGoogle Scholar
  28. Komárek J, Anagnostitis K (1999) Cyanoprokaryota-1. Teil/part 1: Chroococcales. In: Ettl H, Gerloff J, Heynig H, Mollenbauer D (eds) Süßwasserflora von Mitteleuropa 19/1. Elsevier, HeidelbergGoogle Scholar
  29. Komárek J, Anagnostitis K (2005) Cyanoprokaryota—2. Teil/2nd part: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier, HeidelbergGoogle Scholar
  30. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110CrossRefGoogle Scholar
  31. Magalhães C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Türk R, Ruprecht U (2012) At limits of life: multidisciplinary insights reveal environmental constraints in biotic diversity in continental Antarctica. PLoS One 7:1–10Google Scholar
  32. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107CrossRefGoogle Scholar
  33. Ochyra R, Lewis Smith RI, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  34. Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  35. Pachauri RK, Reisinger A (2008) Climate change 2007. Synthesis report. Contribution of working groups 1, 2 and 3 to the fourth assessment report. IPCC, GenevaGoogle Scholar
  36. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogr 12:361–371CrossRefGoogle Scholar
  37. Peat HJ, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeogr 34:132–146CrossRefGoogle Scholar
  38. Powers LE, Ho MC, Freckman DW, Virginia RA (1998) Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arct Alp Res 30:133–141CrossRefGoogle Scholar
  39. Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319CrossRefGoogle Scholar
  40. Sancho LG, Green TGA, Pintado A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673CrossRefGoogle Scholar
  41. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2011) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:13–22CrossRefGoogle Scholar
  42. Seppelt RD, Türk R, Green TGA, Moser G, Pannewitz S, Sancho LG, Schroeter B (2010) Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarct Sci 22:691–702CrossRefGoogle Scholar
  43. Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–496CrossRefGoogle Scholar
  44. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion revealed for the endemic springtail Gomphiocephalus hodgsoni from southern Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedCrossRefGoogle Scholar
  45. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  46. Storey BC, Fink D, Hood D, Joy K, Shulmeister J, Riger-Kusk M, Stevens MI (2010) Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains. Antarct Sci 22:603–618CrossRefGoogle Scholar
  47. Strandtmann RW (1967) Terrestrial Prostigmata (trombidiform mites). In: Gressitt JL (ed) Entomology of Antarctica. American Geophysical Union, Antarctic Research Series 10, pp 51–80Google Scholar
  48. Tamppari LK, Anderson RM, Archer PD et al (2012) Effects of extreme cold and aridity on soils and habitability: McMurdo dry valleys as an analogue for the Mars Phoenix landing site. Antarct Sci 24:211–228CrossRefGoogle Scholar
  49. Traill LW, Wanger TC, de Little SC, Brook BW (2013) Rainfall and temperature variation does not explain arid species diversity in outback Australia. Res Rep Biodivers Stud 3:1–8CrossRefGoogle Scholar
  50. Wise KAJ (1964) New records of Collembola and Acarina in Antarctica. Pac Insects 6:522–523Google Scholar
  51. Wise KAJ (1967) Collembola (springtails). In: Gressitt JL (ed) Entomology of Antarctica. American Geophysical Union, Antarctic Research Series 10, pp 123–148Google Scholar
  52. Wise KAJ (1971) The Collembola of Antarctica. Pac Insect Monogr 25:57–74Google Scholar
  53. Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Colesie
    • 1
    Email author
  • T. G. A. Green
    • 2
    • 3
  • R. Türk
    • 4
  • I. D. Hogg
    • 2
  • L. G. Sancho
    • 3
  • B. Büdel
    • 1
  1. 1.Department of Plant Ecology and SystematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  3. 3.Departamento de Biologia Vegetal II, Farmacia FacultadUniversidad ComplutenseMadridSpain
  4. 4.Fachbereich Organismische BiologieUniversity of SalzburgSalzburgAustria

Personalised recommendations