Polar Biology

, Volume 37, Issue 8, pp 1073–1082 | Cite as

Temporal trends and variability in a high-arctic ecosystem in Greenland: multidimensional analyses of limnic and terrestrial ecosystems

  • Lars O. MortensenEmail author
  • Erik Jeppesen
  • Niels Martin Schmidt
  • Kirsten S. Christoffersen
  • Mikkel P. Tamstorf
  • Mads C. Forchhammer
Original Paper


The high arctic is undergoing a faster change in climate than most other regions of the planet, with already observed ecological consequences. Combined with the characteristics of high-arctic ecosystems, such as low species redundancy, high seasonality and weather extremes, shifts in individual species performance and phenology may lead to altered interaction dynamics through trophic mismatch and cascades. An ecosystem approach is therefore desirable in the attempt to understand the multidimensional impacts of climate. Here, we present ecosystem-wide trend analyses of a long-term dataset on terrestrial and limnic biota with focus on the distribution of observed trends and associated variation across the ecosystem. We used 114 time series drawn from 11 abiotic variables, 19 terrestrial and 7 limnic biotic species/taxa and compared temporal trends, changes and abrupt shifts in the variation within and across the two biota. A total of 36 % of the time series analysed showed a significant trend during the study period with a higher frequency of trends occurring within performance variables. Overall, the changes tended to be negative, indicating advances in phenology but reduced species performance. General system variance was also higher in the limnic biota than in the terrestrial biota, both exhibiting increasing variance up through the trophic system. Overall, our results suggest that multiple biotic responses to the climatic changes in this high-arctic ecosystem are not synchronised across trophic levels and may differ qualitatively and quantitatively between terrestrial and limnic biota.


Arctic ecosystems Temporal variance Temporal trends Trophic interactions Zackenberg Greenland 



The data for this project were provided by the Zackenberg BioBasis programme, and the study was financed by ECOGLOBE, Aarhus University. We would like to thank Jannik Hansen and Lars Holst Hansen for help with the data. This paper is lovingly dedicated to Lotte Mortensen (Mum) for her love of Greenland.

Supplementary material

300_2014_1501_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 55 kb)


  1. AMAP (2011) Snow, water, ice and permafrost (SWIPA): climate changes and the cryosphere. Arctic Monitoring and Assessment Program (AMAP), OsloGoogle Scholar
  2. Brodie J, Post E, Watson F, Berger J (2012) Climate change intensification of herbivore impacts on tree recruitment. Proc R Soc B 279(1732):1366–1370. doi: 10.1098/rspb.2011.1501 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Callaghan TV (2005) Arctic tundra and polar desert ecosystems. In: Callaghan TV (ed) Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  4. Christoffersen KS, Amsinck SL, Landkildehus F, Lauridsen TL, Jeppesen E (2008) Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Adv Ecol Res 40:371–389. doi: 10.1016/S0065-2504(07)00016-5 CrossRefGoogle Scholar
  5. Cooper EJ, Dullinger S, Semenchuk P (2011) Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci 180(1):157–167. doi: 10.1016/j.plantsci.2010.09.005 PubMedCrossRefGoogle Scholar
  6. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  7. Donnelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55(6):805–817. doi: 10.1007/s00484-011-0426-5 PubMedCrossRefGoogle Scholar
  8. Ellebjerg SM, Tamstorf MP, Illeris L, Michelsen A, Hansen BU (2008) Inter-annual variability and controls of plant phenology and productivity at Zackenberg. Adv Ecol Res 40:249–273CrossRefGoogle Scholar
  9. Forchhammer MC, Schmidt NM, Høye TT, Berg TB, Hendrichsen DK, Post E (2008) Population dynamical responses to climate change. Adv Ecol Res 40:391–420CrossRefGoogle Scholar
  10. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25(6):325–331. doi: 10.1016/j.tree.2010.03.002 PubMedCrossRefGoogle Scholar
  11. Goodison BE, Brown RD, Crane RG (1999) Cryospheric systems. EOS science plan. NASA, WashingtonGoogle Scholar
  12. Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B (2008) Present-day climate at Zackenberg. Adv Ecol Res 40:111–149. doi: 10.1016/S0065-2504(07)00006-2 CrossRefGoogle Scholar
  13. Høye TT, Forchhammer MC (2008) Phenology of high-arctic arthropods: effects of climate on spatial, seasonal, and inter-annual variation. Adv Ecol Res 40:299–325CrossRefGoogle Scholar
  14. Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007) Rapid advancement of spring in the High Arctic. Curr Biol 17(12):449–451CrossRefGoogle Scholar
  15. IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  16. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317(5834):58–62. doi: 10.1126/science.1133258 PubMedCrossRefGoogle Scholar
  17. Kattsov VM, Källén E (2005) Future climate change: modelling and scenarios for the Arctic. In: Arris L (ed) Arctic climate impact assessment, vol 4. Cambridge University Press, Cambridge, pp 99–150Google Scholar
  18. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771. doi: 10.1126/science.1156831 PubMedCrossRefGoogle Scholar
  19. MacLennan MM, Arnott SE, Strecker AL (2012) Differential sensitivity of planktonic trophic levels to extreme summer temperatures in boreal lakes. Hydrobiologia 680(1):11–23. doi: 10.1007/s10750-011-0896-9 CrossRefGoogle Scholar
  20. McBean G (2005) Arctic climate: past and present. In: Symon C, Arris L, Heal B (eds) Arctic climate impact assessment. Cambridge University Press, Cambridge, pp 21–60Google Scholar
  21. McKinnon L, Picotin M, Bolduc E, Juiliet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90(8):961–971Google Scholar
  22. Meltofte H, Rasch M (2008) The study area at Zackenberg. Adv Ecol Res 40:101–110. doi: 10.1016/S0065-2504(07)00005-0 CrossRefGoogle Scholar
  23. Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (2008) High-arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland—Introduction. Adv Ecol Res 40:1–12. doi: 10.1016/S0065-2504(07)00001-3 CrossRefGoogle Scholar
  24. Miller-Rushing AJ, Hoye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans R Soc B 365(1555):3177–3186. doi: 10.1098/rstb.2010.0148 CrossRefGoogle Scholar
  25. Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philos Trans R Soc B 365(1549):2013–2018. doi: 10.1098/rstb.2010.0114 CrossRefGoogle Scholar
  26. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  27. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc B 363(1501):2369–2375. doi: 10.1098/rstb.2007.2207 CrossRefGoogle Scholar
  28. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325(5946):1355–1358. doi: 10.1126/science.1173113 PubMedCrossRefGoogle Scholar
  29. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60. doi: 10.1038/Nature01333 PubMedCrossRefGoogle Scholar
  30. Schmidt NM, Berg TB, Forchhammer MC, Hendrichsen DK, Kyhn LA, Meltofte H, Høye TT (2008) Vertebrate predator-prey interactions in a seasonal environment. Adv Ecol Res 40:345–371CrossRefGoogle Scholar
  31. Schmidt NM, Hansen LH, Hansen J, Berg TB, Meltofte H (2012a) BioBasis: Conceptual design and sampling procedures of the biological monitoring programme within Zackenberg basic, 15th edn. Department of BioScience, Aarhus University, RoskildeGoogle Scholar
  32. Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012b) High Arctic plant community responses to a decade of ambient warming. Biodiversity 13(3–4):191–200CrossRefGoogle Scholar
  33. Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155(2):141–153PubMedCrossRefGoogle Scholar
  34. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337. doi: 10.1038/Nature09051 PubMedCrossRefGoogle Scholar
  35. Stendel M, Christensen JH, Petersen D (2008) Arctic climate and climate change with a focus on Greenland. Adv Ecol Res 40:13–44CrossRefGoogle Scholar
  36. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363. doi: 10.1111/j.1461-0248.2008.01250.x PubMedCrossRefGoogle Scholar
  37. Vibe C (1967) Arctic animals in relation to climatic fluctuations. Monogr Greenl 170(5):227Google Scholar
  38. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bahrmann R, Fabian B, Heinrich W, Kohler G, Lichter D, Marstaller R, Sander FW (2003) Trophic levels are differentially sensitive to climate. Ecology 84(9):2444–2453CrossRefGoogle Scholar
  39. Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365(1549):2019–2024. doi: 10.1098/rstb.2010.0021 CrossRefGoogle Scholar
  40. Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85(8):2100–2106CrossRefGoogle Scholar
  41. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lars O. Mortensen
    • 1
    • 3
    Email author
  • Erik Jeppesen
    • 1
    • 2
    • 3
    • 4
  • Niels Martin Schmidt
    • 1
    • 2
  • Kirsten S. Christoffersen
    • 5
  • Mikkel P. Tamstorf
    • 1
  • Mads C. Forchhammer
    • 1
    • 3
    • 4
    • 6
  1. 1.Department of BioscienceAarhus UniversityRoskildeDenmark
  2. 2.Department of Bioscience, Arctic Research CentreAarhus UniversityAarhusDenmark
  3. 3.Greenland Climate Research CentreGreenland Institute of Natural ResourcesNuukGreenland
  4. 4.Department of Bioscience, Centre for Informatics Research on Complexity in Ecology (CIRCE)Aarhus UniversityAarhusDenmark
  5. 5.Freshwater Biological Laboratory, Department of BiologyCopenhagen UniversityCopenhagenDenmark
  6. 6.The Polar CentrePenn State UniversityUniversity ParkUSA

Personalised recommendations