Advertisement

Polar Biology

, Volume 37, Issue 5, pp 665–674 | Cite as

Fledging success of little auks in the high Arctic: do provisioning rates and the quality of foraging grounds matter?

  • Johanna E. H. Hovinen
  • Katarzyna Wojczulanis-Jakubas
  • Dariusz Jakubas
  • Haakon Hop
  • Jørgen Berge
  • Dorota Kidawa
  • Nina J. Karnovsky
  • Harald Steen
Original Paper

Abstract

Long-lived birds often face a dilemma between self-maintenance and reproduction. In order to maximize fitness, some seabird parents alternate short trips to collect food for offspring with long trips for self-feeding (bimodal foraging strategy). In this study, we examined whether temporal and spatial variation in the quality of foraging grounds affect provisioning and fledging success of a long-lived, bimodal forager, the little auk (Alle alle), the most abundant seabird species in the Arctic ecosystem. We predicted that an increase in sea surface temperature (SST), with an associated decrease in the preferred Arctic zooplankton prey, would increase foraging trip durations, decrease chick provisioning rates and decrease chick fledging success. Chick provisioning and survival were observed during three consecutive years (2008–2010) at two colonies with variable foraging conditions in Spitsbergen: Isfjorden and Magdalenefjorden. We found that a change in SST (range 1.6–5.4 °C) did not influence trip durations or provisioning rates. SST was, however, negatively correlated with the number of prey items delivered to a chick. Furthermore, provisioning rates did not influence chick’s probability to fledge; instead, SST was also negatively correlated with fledging probability. This was likely related to the prey availability and quality in the little auk’s foraging grounds. Our findings suggest that predicted warmer climate in the Arctic will negatively influence the ability of parents to provide their chicks, and consequently, the fledging prospects of little auk chicks.

Keywords

Bimodal foraging Fledging success Alle alle Calanus Svalbard 

Notes

Acknowledgments

This work was supported by a grant from Norway through the Norwegian Financial Mechanisms Project No. PNRF-234-AI-1/07(ALKEKONGE) and conducted under the permission of the Governor of Svalbard and Norwegian Animal Research Authority. We thank Rafał Boehnke for analysing chick diet data from Magdalenefjorden and Mateusz Barcikowski, Anika Beiersdorf, Eirik Grønningsæter, Aino Luukkonen, Atle Coward Markussen, Adam Nawrot, Jan Samołyk, Lech Stempniewicz, Tobias Stål and Mikko Vihtakari for their invaluable help in the field.

References

  1. Barrett RT, Chapdelaine G, Anker-Nilssen T, Mosbech A, Montevecchi WA, Reid JB, Veit RR (2006) Seabird numbers and prey consumption in the North Atlantic. ICES J Mar Sci 63:1145–1158Google Scholar
  2. Blachowiak-Samolyk K, Søreide JE, Kwasniewski S, Sundfjord A, Hop H, Falk-Petersen S, Hegseth EN (2008) Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79.81°N). Deep-Sea Res II 55:2210–2224CrossRefGoogle Scholar
  3. Brekke B, Gabrielsen GW (1994) Assimilation efficiency of adult kittiwakes and Brünnich’s guillemots fed capelin and arctic cod. Polar Biol 14:279–284CrossRefGoogle Scholar
  4. Brown ZW, Welcker J, Harding AMA, Walkusz W, Karnovsky NJ (2012) Divergent diving behaviour during short and long trips of a bimodal forager, the little auk Alle alle. J Avian Biol 43:215–226CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  6. Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282CrossRefGoogle Scholar
  7. Congdon BC, Krockenberger AK, Smithers BV (2005) Dual-foraging and coordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar Ecol Prog Ser 301:293–301CrossRefGoogle Scholar
  8. Daase M, Eiane K (2007) Mesozooplankton distribution in northern Svalbard waters in relation to hydrography. Polar Biol 30:969–981CrossRefGoogle Scholar
  9. Davoren GK, Montevecchi WA (2003) Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalge. J Avian Biol 34:44–53CrossRefGoogle Scholar
  10. Duriez O, Weimerskirch H, Fritz H (2000) Regulation of chick provisioning in the thin-billed prion: an interannual comparison and manipulation of parents. Can J Zool 78:1275–1283CrossRefGoogle Scholar
  11. Falk-Petersen S, Pavlov V, Timofeev S, Sargent JR (2007) Climate variability and possible effects on arctic food chains: the role of Calanus. In: Ørbæk JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) Arctic-Alpine ecosystems and people in a changing environment. Springer, Berlin, pp 147–166CrossRefGoogle Scholar
  12. Fauchald P (2009) Spatial interaction between seabirds and prey: review and synthesis. Mar Ecol Prog Ser 463(391):139–151CrossRefGoogle Scholar
  13. Golet GH, Kuletz KJ, Roby DD, Irons DB (2000) Adult prey choice affects chick growth and reproductive success in pigeon guillemots. Auk 117:82–91CrossRefGoogle Scholar
  14. Grandeiro JP, Nunes M, Silva MC, Furness RW (1998) Flexible foraging strategy of Cory’s shearwater Calonectris diomedea, during chick rearing period. Anim Behav 56:1169–1176CrossRefGoogle Scholar
  15. Grémillet D, Welcker J, Karnovsky NJ, Walkusz W, Hall ME, Fort J, Brown ZW, Speakman JR, Harding AMA (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206CrossRefGoogle Scholar
  16. Harding AMA, van Pelt TI, Lifjeld JT, Mehlum F (2004) Sex differences in little auk Alle alle parental care: transition from biparental to paternal-only care. Ibis 146:642–651CrossRefGoogle Scholar
  17. Hirche HJ, Hagen W, Mumm N, Richter C (1994) The northeast water polynya, Greenland Sea. III. Mesozooplankton and makrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol 14:491–503CrossRefGoogle Scholar
  18. Hunt GL (1991) Occurrence of polar seabirds at sea in relation to prey concentrations and oceanographic factors. Polar Res 10:553–559CrossRefGoogle Scholar
  19. IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  20. Jakubas D, Wojczulanis-Jakubas K, Walkusz W (2007) Response of dovekie to changes in food availability. Waterbirds 30:421–428CrossRefGoogle Scholar
  21. Jakubas D, Gluchowska M, Wojczulanis-Jakubas K, Karnovsky NJ, Keslinka L, Kidawa D, Walkusz W, Boehnke R, Cisek M, Kwasniewski S, Stempniewicz L (2011) Foraging effort does not influence body condition and stress level in little auks. Mar Ecol Prog Ser 432:277–290CrossRefGoogle Scholar
  22. Jakubas D, Iliszko L, Wojczulanis-Jakubas K, Stempniewicz L (2012) Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol 35:73–81CrossRefGoogle Scholar
  23. Jakubas D, Trudnowska E, Wojczulanis-Jakubas K, Iliszko L, Kidawa D, Darecki M, Blachowiak Samolyk K, Stempniewicz L (2013) Foraging closer to the colony leads to faster growth in little auks. Mar Ecol Prog Ser 489:263–278CrossRefGoogle Scholar
  24. Kadin M, Österblom H, Hentati-Sundberg J, Olsson O (2012) Contrasting effects of food quality and quantity on a marine top predator. Mar Ecol Prog Ser 444:239–249CrossRefGoogle Scholar
  25. Karnovsky NJ, Kwasniewski S, Weslawski JM, Walkusz W, Beszczynska-Möller A (2003) Foraging behaviour of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303CrossRefGoogle Scholar
  26. Karnovsky NJ, Harding AMA, Walkusz W, Kwasniewski S, Goszczko I, Wiktor J Jr, Routti H, Bailey A, McFadden L, Brown ZW, Beaugrand G, Grémillet D (2010) Foraging distributions of little auks Alle alle across the Greenland Sea: implications of present and future Arctic climate change. Mar Ecol Prog Ser 415:283–293CrossRefGoogle Scholar
  27. Kwasniewski S, Gluchowska M, Jakubas D, Wojczulanis-Jakubas K, Walkusz W, Karnovsky N, Blachowiak-Samolyk K, Cisek M (2010) The impact of different hydrographic conditions and zooplankton communities on provisioning little auks along the West coast of Spitsbergen. Prog Oceanogr 87:72–82CrossRefGoogle Scholar
  28. Lack D (1968) Ecological adaptations for breeding in birds. Methuen, LondonGoogle Scholar
  29. Motoda S (1985) Devices of simple plankton apparatus—VII. Bull Mar Sci 37:776–777Google Scholar
  30. Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  31. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Ricklefs RE (1983) Some considerations on the reproductive energetics of pelagic seabirds. Stud Avian Biol 8:84–94Google Scholar
  33. Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830CrossRefGoogle Scholar
  34. Saloranta TM, Svendsen H (2001) Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000. Polar Res 20:177–184CrossRefGoogle Scholar
  35. Schaffner FC (1990) Food provisioning by white-tailed tropicbird: effect on the development pattern of the chick. Ecology 71:375–390CrossRefGoogle Scholar
  36. Scott CL, Kwasniewski S, Falk-Petersen S, Sargent JR (2000) Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biol 23:510–516CrossRefGoogle Scholar
  37. Smith SL, Smith WO, Codispoti LA, Wilson DL (1990) Biological observations in the marginal ice zone of the east Greenland Sea. J Mar Res 43:693–717CrossRefGoogle Scholar
  38. Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55:2225–2244CrossRefGoogle Scholar
  39. Stearns SC (1989) Trade-offs in life history evolution. Funct Ecol 3:259–268CrossRefGoogle Scholar
  40. Steen H, Vogedes D, Broms F, Falk-Petersen S, Berge J (2007) Little auks (Alle alle) breeding in a High Arctic fjord system: bimodal foraging strategies as a response to poor food quality? Polar Res 26:118–125CrossRefGoogle Scholar
  41. Stempniewicz L (1981) Breeding biology of the little auk Plautus alle in the Hornsund region, Spitsbergen. Acta Ornithol 18:1–26Google Scholar
  42. Stempniewicz L (2001) Alle alle little auk. The Journal of the Birds of Western Palearctic, BWP Update, vol 3. Oxford University Press, Oxford, pp 175–201Google Scholar
  43. Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario. Deep-Sea Res II 54:2934–2945CrossRefGoogle Scholar
  44. Stempniewicz L, Darecki M, Trudnowska E, Blachowiak-Samolyk K, Boehnke R, Jakubas D, Keslinka-Nawrot L, Kidawa D, Sagan S, Wojczulanis-Jakubas K (2013) Visual prey availability and distribution of foraging little auks (Alle alle) in the shelf waters of West Spitsbergen. Polar Biol 36:949–955CrossRefGoogle Scholar
  45. Trudnowska E, Szczucka J, Hoppe L, Boehnke R, Hop H, Blachowiak-Samolyk K (2012) Multidimensional zooplankton observations on the northern West Spitsbergen Shelf. J Mar Syst 98–99:18–25CrossRefGoogle Scholar
  46. Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869CrossRefGoogle Scholar
  47. Walkusz W, Kwasniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Weslawski JM (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281CrossRefGoogle Scholar
  48. Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenot-Chaillet F, Hindermeyer X, Judas J (1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav 47:472–476CrossRefGoogle Scholar
  49. Weimerskirch H, Chastel O, Cherel Y, Henden J-A, Tveraa T (2001) Nest attendance and foraging movements of northern fulmars rearing chicks at Bjørnøya Barents Sea. Polar Biol 24:83–88CrossRefGoogle Scholar
  50. Weimerskirch H, Ancel A, Caloin M, Zahariev A, Spagiari J, Kersten M, Chastel O (2003) Foraging efficiency and adjustment of energy expenditure in a pelagic seabird provisioning its chick. Anim Behav 72:500–508Google Scholar
  51. Welcker J, Harding AMA, Karnovsky NJ, Steen H, Strøm H, Gabrielsen GW (2009a) Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J Avian Biol 40:388–399CrossRefGoogle Scholar
  52. Welcker J, Steen H, Harding AMA, Gabrielsen GW (2009b) Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis 151:502–513CrossRefGoogle Scholar
  53. Welcker J, Beiersdorf A, Varpe Ø, Steen H (2012) Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav Ecol 23:1372–1378CrossRefGoogle Scholar
  54. Weslawski JM, Koszteyn J, Kwasniewski S, Stempniewicz L, Malinga M (1999) Summer food resources of the little auk, Alle alle (L.) in the European Arctic seas. Pol Polar Res 20:387–403Google Scholar
  55. Weydmann A, Kwasniewski S (2008) Distribution of Calanus populations in a glaciated fjord in the Arctic (Hornsund, Spitsbergen)—the interplay between biological and physical factors. Polar Biol 31:1023–1035CrossRefGoogle Scholar
  56. Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54CrossRefGoogle Scholar
  57. Wojczulanis-Jakubas K, Jakubas D (2012) When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle alle). Auk 129:632–637CrossRefGoogle Scholar
  58. Wojczulanis-Jakubas K, Jakubas D, Karnovsky NJ, Walkusz W (2010) Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res 29:22–29CrossRefGoogle Scholar
  59. Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Johanna E. H. Hovinen
    • 1
    • 2
  • Katarzyna Wojczulanis-Jakubas
    • 3
  • Dariusz Jakubas
    • 3
  • Haakon Hop
    • 1
  • Jørgen Berge
    • 4
  • Dorota Kidawa
    • 3
  • Nina J. Karnovsky
    • 5
  • Harald Steen
    • 1
  1. 1.Norwegian Polar InstituteFram CentreTromsøNorway
  2. 2.University Centre in SvalbardLongyearbyenNorway
  3. 3.Department of Vertebrate Ecology and ZoologyUniversity of GdańskGdańskPoland
  4. 4.Faculty of Biosciences, Fisheries and EconomicsUiT-The Arctic University of NorwayTromsøNorway
  5. 5.Department of BiologyPomona CollegeClaremontUSA

Personalised recommendations