Polar Biology

, Volume 37, Issue 4, pp 541–553 | Cite as

Population trajectories for the Antarctic bivalve Laternula elliptica: identifying demographic bottlenecks in differing environmental futures

  • Claire I. Guy
  • Vonda J. Cummings
  • Andrew M. Lohrer
  • Sofia Gamito
  • Simon F. Thrush
Original Paper

Abstract

The world’s oceans are changing, and dramatic shifts have been documented in the Southern Ocean. The consequences of these shifts to coastal benthic organisms are difficult to predict at present, as ocean warming may increase primary production and food resources for benthic consumers, whilst OA may have negative impacts that differentially affect various species and life stages. A model was developed to investigate how different scenarios of change may influence population size of the Antarctic bivalve Laternula elliptica. The model describes potential implications of both pH and temperature change on survivorship and reproductive output of a population of this bivalve species in McMurdo Sound, Ross Sea. Implications of increases and decreases in mortality rate across different life stages of the population (early, mid and late) were assessed. Additionally, effects on energetic resource partitioning and dictating reproductive potential (RP) were also investigated. Significant declines in RP, due to increased basal metabolic demand, were associated with even relatively small changes in temperature and pH, resulting in populations declining to 25 % of the starting equilibrium density within 60 years. As L. elliptica is a pivotal species to the functionality of the Antarctic coastal benthic ecosystem, wide spread repercussions are expected if populations are impacted as the model predicts. Although further model development is required to explore the ecosystem implications of the population decline described in this paper, this work allows a better understanding of the consequences of change as soon as data on the direction and magnitude of the changes affecting Antarctic seas become available.

Keywords

Ocean acidification Ocean warming Antarctica Laternula elliptica Ecosystem modelling 

Notes

Acknowledgments

This research was supported by an Antarctica New Zealand/Air New Zealand post doctoral fellowship to C.G and NIWA capability fund to V.C. In addition, thanks go to Victoria Metcalf, Lincoln University, NZ, for making the respiration measurements in the L. elliptica pH experiment and Kay Steinkamp, NIWA, for his help with the production of contour plots. S. Schiaparelli and an anonymous reviewer are thanked for their helpful comments, which improved the manuscript.

References

  1. Ahn I-Y (1993) Enhanced particle flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove, King George Island. J Exp Mar Biol Ecol 171:75–90CrossRefGoogle Scholar
  2. Ahn I-Y (1994) Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: benthic environment and an adaptive strategy. Memoirs of the National Institute of Polar Research. Special Issue 50:1–10Google Scholar
  3. Ahn I-Y (1997) Feeding ecology of the Antarctic lamellibranch Laternula elliptica (Laternulidae) in Marian Cove and vicinity, King George Island, during one austral summer. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge, pp 142–151Google Scholar
  4. Ahn I-Y, Shim JH (1998) Summer metabolism of the Antarctic clam, Laternula elliptica (King and Broderip) in Maxwell Bay, King George Island and its implications. J Exp Mar Biol Ecol 224:253–264CrossRefGoogle Scholar
  5. Aldea C, Troncoso JS (2010) Moluscos del Mar de Bellingshausen (Antártica). Observaciones y distribusión de los gastrópodos con concha, bivalvos y escafópodos del Oeste de la Península Antártica, recolectados en las Campañas Antárticas Españolas BENTART 2003 y 2006. Edición propia. Vigo, EspañaGoogle Scholar
  6. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486CrossRefGoogle Scholar
  7. Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Ehn JK, Frey KE, Garley R, Laney SR, Lubelczyk L, Mathis J, Matsuok A, Mitchell BG, Moore GWK, Ortega-Retuerta E, Pal S, Polashenski CM, Reynolds RA, Scheiber B, Sosik HM, Stephens M, Swift JH (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1048CrossRefGoogle Scholar
  8. Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103PubMedCrossRefGoogle Scholar
  9. Bednarsek N, Tarling GA, Bakker DCE, Fielding S, Cohen AL, Kuzirian A, McCorkle DC, Lézé B, Montagna R (2012) Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification. Glob Change Biol 18(7):2378–2388CrossRefGoogle Scholar
  10. Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687PubMedCrossRefGoogle Scholar
  11. Berkman PA, Waller TR, Alexander SP (1991) Unprotected larval development in the Antarctic scallop Adamussium colbecki (Mollusca: Bivalvia: Pectinidae). Antarct Sci 3:151–157CrossRefGoogle Scholar
  12. Beukema JJ (1982) Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: iI the edible cockle, Cerastoderma edule. Neth J Sea Res 15:391–405CrossRefGoogle Scholar
  13. Bigatti G, Penchaszadeh PE, Mercuri G (2001) Aspects of the gondal cycle in the Antarctic bivalve Laternula elliptica. J Shellfish Res 20:283–287Google Scholar
  14. Bosch IAP, Pearse JS (1988) Seasonal pelagic development and juvenile recruitment of the bivalve Laternula elliptica in McMurdo Sound. Antarct Am Zool 28:89AGoogle Scholar
  15. Brenchley GA (1982) Mechanisms of spatial competition in marine soft-bottom communities. J Exp Mar Biol Ecol 60:17–33CrossRefGoogle Scholar
  16. Brey T (1991) Population dynamics of Sterechinus antarcticus (Echinodermata: echinoidea) on the Weddell Sea shelf and slope, Antarctica. Ant Sci 3:251–256CrossRefGoogle Scholar
  17. Brey T, Voigt M, Jenkins K, Ahn I-Y (2011) The bivalve Laternula elliptica at King George Island–A biological recorder of climate forcing in the West Antarctic Peninsula region. J Mar Syst 88(4):542–552CrossRefGoogle Scholar
  18. Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of the Southern Leopard Frog (Rana sphenocephala). Arch Environ Contam Toxicol 39:91–96PubMedCrossRefGoogle Scholar
  19. Brockington S (2001) The seasonal energetics of the Antarctic bivalve Laternula elliptica (King and Broderip) at Rothera Point, Adelaid Island. Polar Biol 24:523–530CrossRefGoogle Scholar
  20. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc Lond B Biol Sci 276:1883–1888CrossRefGoogle Scholar
  21. Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362–376PubMedCrossRefPubMedCentralGoogle Scholar
  22. Costanza RA, Voinov A (2001) Modeling ecological and economic systems with STELLA. Part III. Ecol Model 143:1–7CrossRefGoogle Scholar
  23. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14(10):405–410PubMedCrossRefGoogle Scholar
  24. Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLos ONE, 6(1) doi:10.1371/journal.pone.0016069
  25. Dick D, Phillip E, Kriews M, Abele D (2007) Is the umbo matrix of bivalve shells (Laternula elliptica) a climate archive? Aquat Toxicol 84:450–456PubMedCrossRefGoogle Scholar
  26. Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294CrossRefGoogle Scholar
  27. Dupont S, Lundve B, Thorndyke M (2010) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J Exp Zool (B) 314B:382–389CrossRefGoogle Scholar
  28. Feldman K, Vadopalas B, Armstrong D, Friedman C, Hilborn R, Naish K, Orensanz J, Valero J (2004) Comprehensive literature review and synopsis of issues relating to geoduck (Panopea abrupta) ecology and aquaculture production. Washington State Department of Natural Resources, OlympiaGoogle Scholar
  29. Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Est Coast Shelf Sci 86:675–682CrossRefGoogle Scholar
  30. Gazeau F, Quiblier C, Jansen JM, Gattusa J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603CrossRefGoogle Scholar
  31. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277PubMedCrossRefGoogle Scholar
  32. Gnaiger E, Bitterlich G (1984) Proximate biochemical proposition and caloric content calculated from elemental CHN analysis, a stoichiometric concept. Ocecologia 62:289–298CrossRefGoogle Scholar
  33. Gosselin LA, Qian P-Y (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282CrossRefGoogle Scholar
  34. Green MA, Jones ME, Boudreau CL, Moore RL, Westman BA (2004) Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol Oceanogr 49:727–734CrossRefGoogle Scholar
  35. Hardy P (1972) Biomass estimates from some shallow-water infaunal communities at Signy Island, South Orkney Island. Br Antarct Surv Bull 31:93–106Google Scholar
  36. Harper EM, Peck LS (2003) Predatory behaviour and metabolic costs in the Antarctic muricid gastropod Trophon longstaffi. Polar Biol 26(3):208–217Google Scholar
  37. Hily C (1991) Is the activity of benthic suspension feeders a factor in controlling water quality in the Bay of Brest? Mar Ecol Prog Ser 69:179–188CrossRefGoogle Scholar
  38. Jørgensen SE, Fath BD (2011) Fundamentals of ecological modelling. Applications in environmental management and research, 4th edn. Elsevier, Amsterdam Google Scholar
  39. Kang D-H, Ahn I-Y, Choi K-S (2003) Quantitative assessment of reproductive condition of the Antarctic clam, Laternula elliptica (King & Broderip), using image analysis. Invertebr Reprod Dev 44:71–78CrossRefGoogle Scholar
  40. Kang D-H, Ahn I-Y, Choi K-S (2009) The annual reproductive pattern of the Antarctic clam, Laternula elliptica from Marian Cove, King George Island. Polar Biol 32:517–528CrossRefGoogle Scholar
  41. Kinard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in the Arctic sea ice over the past 1,450 years. Nature 479:506–513CrossRefGoogle Scholar
  42. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biol 1:91–98CrossRefGoogle Scholar
  43. Levitus S, Antonov JL, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229CrossRefGoogle Scholar
  44. Levitus S, Antonov JL, Boyer TP (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32(2). doi:10.1029/2004GL021592
  45. Lohrer AM, Cummings VJ, Thrush SF (2013) Altered sea ice thickness and permanence affects benthic ecosystem functioning in coastal Antarctica. Ecosystems 16:224–236CrossRefGoogle Scholar
  46. McCoy MW, Gillooly JF (2008) Predicting natural mortality rates of plants and animals. Ecol Lett 11:710–716PubMedCrossRefGoogle Scholar
  47. McEdward LR, Milner BG (2007) Echinoid larval ecology. In: Lawrence JM (ed) Developments in Aquaculture and Fisheries Science, vol 32. Elsevier, Amsterdam, pp 59–78Google Scholar
  48. McNeil BI, Tagliabue A, Sweeney C (2010) A multi-decadal delay in the onset of corrosive ‘acidified’ waters in the Ross Sea of Antarctica due to strong air-sea CO2 disequiliruim. Geophys Res Lett 37(19). doi:10.1029/2010GL044597
  49. McNeil BI, Sweeney C, Gibson JAE (2011) Natural seasonal variation of aragonite saturation state within two Antarctic coastal sites. Antarct Sci 23(4):411–412CrossRefGoogle Scholar
  50. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32. doi:10.1029/2005GL024042
  51. Millero FJ (2006) Chemical oceanography. CRC Press, Boca RatonGoogle Scholar
  52. Momo F, Kowalke J, Schloss I, Mercuri G, Ferreyra G (2002) The role of Laternula elliptica in the energy budget of Potter Cove (King George Island, Antarctica). Ecol Model 155:43–51CrossRefGoogle Scholar
  53. Morley SA, Peck LS, Miller AJ, Pörtner HO (2007) Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia 153:29–36PubMedCrossRefGoogle Scholar
  54. Morley SA, Hirse T, Portner HO, Peck LS (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Phys A 153:154–161CrossRefGoogle Scholar
  55. Morley SA, Hirse T, Thorne MAS, Portner HO, Peck LS (2012) Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve, Laternula elliptica. Comp Biochem Phys A 162:16–21CrossRefGoogle Scholar
  56. Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PlosOne 6(1). doi:10.1371/journal.pone.0014521
  57. Nehrke G, Poigner H, Wilhelms-Dick D, Brey T, Abele D (2012) Coexistence of three calcium carbonate polymorphs in the shell the Antarctic clam Laternula elliptica. Geochem Geophys Geosyst 13(5). doi:10.1029/2011GC003996
  58. Norkko JA, Thrush SF, Cummings VJ (2005) Detecting growth under environmental extremes: spatial and temporal patterns in nucleic acid ratios in two Antarctic bivalves. J Exp Mar Biol Ecol 326:144–156CrossRefGoogle Scholar
  59. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Momfray P, Mouchect A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686PubMedCrossRefGoogle Scholar
  60. Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Change Biol 15:2123–2136CrossRefGoogle Scholar
  61. Parsons PA (1990) The metabolic cost of multiple environmental stresses: implications for climatic change and conservation. Trends Ecol Evol 5(9):315–317PubMedCrossRefGoogle Scholar
  62. Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am Zool 31:65–80Google Scholar
  63. Peck LS (1989) Temperature and basal metabolism in two Antarctic marine herbivores. J Exp Mar Biol Ecol 127:1–12CrossRefGoogle Scholar
  64. Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507CrossRefGoogle Scholar
  65. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630CrossRefGoogle Scholar
  66. Philipp EA, Husmann G, Abele D (2011) The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island, Antarctica. Antarct Sci 23:127–138CrossRefGoogle Scholar
  67. Ralph R, Maxwell JGH (1977) Growth of two Antarctic lamellibranchs: Adamussium colbecki and Laternula elliptica. Mar Biol 42:171–175CrossRefGoogle Scholar
  68. Richmond B (2005) An introduction to systems thinking. ISEE systems Google Scholar
  69. Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–249CrossRefGoogle Scholar
  70. Royer J, Seguineau C, Park K-I, Pouvreau S, Choi K-S, Costil K (2008) Gametogenetic cycle and reproductive effort assessed by two methods in 3 age classes of Pacific oysters, Crassostrea gigas, reared in Normandy. Aquaculture 277:313–320CrossRefGoogle Scholar
  71. Rumrill SS (1990) Natural mortality of marine invertebrate larvae. Ophelia 32:163–198CrossRefGoogle Scholar
  72. Schwarz A, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799CrossRefGoogle Scholar
  73. Smith WO, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236CrossRefGoogle Scholar
  74. Smith WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166PubMedCrossRefGoogle Scholar
  75. Smith WO, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res PT II 47:3119–3140CrossRefGoogle Scholar
  76. Smith CR, Mincks S, Demaster DJ (2006) A synthesis of bentho–pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res PT II 53:875–894CrossRefGoogle Scholar
  77. Smith CR, Demaster DJ, Thomas C, Sršen P, Grange L, Evrard V, Deleo F (2012) Pelagic–benthic coupling, food banks and climate change on the west Antarctic Peninsula shelf. Oceanography 25(3):188–201CrossRefGoogle Scholar
  78. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Oceanography 55:2041–2058Google Scholar
  79. Sundelöf A, Jenkins SR, Svensson CJ, Delany J, Hawkins SJ, Åberg P (2010) Determinants of reproductive potential and population size in open populations of Patella vulgata. Mar Biol 157:779–789CrossRefGoogle Scholar
  80. Tatian M, Sahade R, Mercuri G, Fuentes VL, Antcali JC, Stellfeldt A, Esnal GB (2008) Feeding ecology of benthic filter-feeders at Potter Cove, an Antarctic coastal ecosystem. Polar Biol 31:509–517CrossRefGoogle Scholar
  81. Tyler PA, Reeves S, Peck L, Clarke A, Powell D (2003) Seasonal variation in the gametogenic ecology of the Antarctic scallop Adamussium colbecki. Polar Biol 26:727–733CrossRefGoogle Scholar
  82. Urban HJ, Mercuri G (1998) Population dynamics of the bivalve Laternula elliptica from Potter Cove, King George Island, South Shetland Islands. Antarct Sci 10:153–160CrossRefGoogle Scholar
  83. Watson SA, Peck LS, Tyler PA, Southgate PC, Tan KS, Day RW, Morley SA (2012) Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Glob Change Biol 18:3026–3038CrossRefGoogle Scholar
  84. White MG (ed) (1984) Marine benthos. Academic Press, LondonGoogle Scholar
  85. Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366:187–197CrossRefGoogle Scholar
  86. Wilson JG (1992) Age specific energetics of reproduction in Nucella turgida (Leckenby and Marshall) a bivalve with lecithotrophic larval development. Invertebr Reprod Dev 22:275–280CrossRefGoogle Scholar
  87. Wing SR, McLeod RJ, Leichter JJ, Frew RD, Lamare MD (2012) Sea ice microbial production supports Ross Sea benthic communities: influence of a small but stable subsidy. Ecology 93:314–323PubMedCrossRefGoogle Scholar
  88. Woodin SA, Jackson JBC (1979) Interphyletic competition among marine benthos. Am Zool 19:1029–1043Google Scholar
  89. Zamorano JH, Duarte WE, Moreno CA (1986) Predation upon Laterula elliptica (Bivalvia, Anatinidae): a field manipulation in South Bay, Antarctica. Polar Biol 6:139–143CrossRefGoogle Scholar
  90. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claire I. Guy
    • 1
    • 5
  • Vonda J. Cummings
    • 1
  • Andrew M. Lohrer
    • 2
  • Sofia Gamito
    • 3
  • Simon F. Thrush
    • 2
    • 4
  1. 1.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
  2. 2.National Institute of Water and Atmospheric ResearchHamiltonNew Zealand
  3. 3.Faculty of Science and Technology, Institute of Marine Research (IMAR-CMA)University of AlgarveFaroPortugal
  4. 4.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  5. 5.University Marine Biological StationMillportIsle of Cumbrae

Personalised recommendations