Polar Biology

, Volume 37, Issue 3, pp 375–389 | Cite as

Protist community composition in the Pacific sector of the Southern Ocean during austral summer 2010

  • Christian WolfEmail author
  • Stephan Frickenhaus
  • Estelle S. Kilias
  • Ilka Peeken
  • Katja Metfies
Original Paper


Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.


Phytoplankton Eukaryotic diversity ARISA Next-generation sequencing HPLC 



This study was accomplished within the Young Investigator Group PLANKTOSENS (VH-NG-500), funded by the Initiative and Networking Fund of the Helmholtz Association. We thank the captain and crew of the RV Polarstern for their support during the cruise. We are grateful to F. Kilpert and B. Beszteri for their bioinformatical support. We also want to thank A. Schroer, A. Nicolaus, and K. Oetjen for technical support in the laboratory and Steven Holland for providing access to the program Analytic Rarefaction 1.3. We would like to acknowledge E. M. Nöthig and K. Kohls for their insightful discussions and reviews of this manuscript.


  1. Alderkamp AC, de Baar HJW, Visser RJW, Arrigo KR (2010) Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnol Oceanogr 55:1248–1264CrossRefGoogle Scholar
  2. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791. doi: 10.1038/nrmicro1747 PubMedCrossRefGoogle Scholar
  3. Baldwin AJ, Moss JA, Pakulski JD, Catala P, Joux F, Jeffrey WH (2005) Microbial diversity in a Pacific Ocean transect from the Arctic to Antarctic circles. Aquat Microb Ecol 41:91–102CrossRefGoogle Scholar
  4. Banse K (1996) Low seasonality of low concentrations of surface chlorophyll in the subantarctic water ring: underwater irradiance, iron, or grazing? Prog Oceanogr 37:241–291. doi: 10.1016/s0079-6611(96)00006-7 CrossRefGoogle Scholar
  5. Barlow RG, Cummings DG, Gibb SW (1997) Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar Ecol Prog Ser 161:303–307. doi: 10.3354/meps161303 CrossRefGoogle Scholar
  6. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349. doi: 10.1111/j.1462-2920.2010.02332.x PubMedCrossRefGoogle Scholar
  7. Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695. doi: 10.1038/ismej.2008.44 PubMedCrossRefGoogle Scholar
  8. Bidigare RR (1991) Analysis of algal chlorophylls and carotenoids. In: Hurd DC, Spencer DW (eds) Marine particles: analysis and characterisation. American Geophysical Union, Washington, DC. Geophys Monogr Ser 63:119–123. doi: 10.1029/GM063p0119
  9. Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861CrossRefGoogle Scholar
  10. Caron DA, Dennett MR, Lonsdale DJ, Moran DM, Shalapyonok L (2000) Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr 47:3249–3272CrossRefGoogle Scholar
  11. Chang FH, Williams MJM, Schwarz JN, Hall JA, Maas EW, Stewart R (2013) Spatial variation of phytoplankton assemblages and biomass in the New Zealand sector of the Southern Ocean during the late austral summer 2008. Polar Biol 36:391–408CrossRefGoogle Scholar
  12. Comeau AM, Benoît P, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land-fast sea ice. J Phycol 49:229–240CrossRefGoogle Scholar
  13. Danovaro R, Corinaldesi C, Luna GM, Magagnini M, Manini E, Pusceddu A (2009) Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep Sea Res Part II Top Stud Oceanogr 56:738–747. doi: 10.1016/j.dsr2.2008.10.011 CrossRefGoogle Scholar
  14. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793. doi: 10.1073/pnas.0902080106 PubMedCrossRefGoogle Scholar
  15. Davidson AT, Scott FJ, Nash GV, Wright SW, Raymond B (2010) Physical and biological control of protistan community composition, distribution and abundance in the seasonal ice zone of the Southern Ocean between 30 and 80 degrees E. Deep Sea Res Part II Top Stud Oceanogr 57:828–848. doi: 10.1016/j.dsr2.2009.02.011 CrossRefGoogle Scholar
  16. Debaar HJW, Dejong JTM, Bakker DCE, Loscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern Ocean. Nature 373:412–415CrossRefGoogle Scholar
  17. Detmer AE, Bathmann UV (1997) Distribution patterns of autotrophic pico- and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr 44:299–320CrossRefGoogle Scholar
  18. Diez B, Pedros-Alio C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941PubMedCentralPubMedCrossRefGoogle Scholar
  19. Diez B, Massana R, Estrada M, Pedros-Alio C (2004) Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. Limnol Oceanogr 49:1022–1034CrossRefGoogle Scholar
  20. DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JB, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598. doi: 10.1038/35007061 PubMedCrossRefGoogle Scholar
  21. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  22. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi: 10.1371/journal.pcbi.1002195 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 PubMedCrossRefGoogle Scholar
  24. Edvardsen B, Eikrem W, Throndsen J, Sez AG, Probert I, Medlin LK (2011) Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). Eur J Phycol 46:202–228. doi: 10.1080/09670262.2011.594095 CrossRefGoogle Scholar
  25. Elsayed SZ, Biggs DC, Holmhansen O (1983) Phytoplankton standing crop, primary productivity and near-surface nitrogenous nutrient fields in the Ross Sea, Antarctica. Deep Sea Res Part A Oceanogr Res Pap 30:871–886. doi: 10.1016/0198-0149(83)90005-5 CrossRefGoogle Scholar
  26. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399–410PubMedGoogle Scholar
  27. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106:22427–22432. doi: 10.1073/pnas.0908284106 PubMedCrossRefGoogle Scholar
  28. Gaspar JM, Thomas WK (2013) Assessing the consequences of denoising marker-based metagenomic data. PLoS ONE 8:e60458. doi: 10.1371/journal.pone.0060458 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gast RJ, Dennett MR, Caron DA (2004) Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:2028–2037. doi: 10.1128/aem.70.4.2028- 2037.2004PubMedCentralPubMedCrossRefGoogle Scholar
  30. Gravalosa JM, Flores JA, Sierro FJ, Gersonde R (2008) Sea surface distribution of coccolithophores in the eastern Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas) during the late austral summer of 2001. Mar Micropaleontol 69:16–25. doi: 10.1016/j.marmicro.2007.11.006 CrossRefGoogle Scholar
  31. Guillou L, Eikrem W, Chrétiennot-Dinet MJ, Le Gall F, Massana R, Romari K, Pedrós-Alió C, Vaulot D (2004) Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155:193–214PubMedCrossRefGoogle Scholar
  32. Hamilton AK, Lovejoy C, Galand PE, Ingram RG (2008) Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system. Limnol Oceanogr 53:922–935CrossRefGoogle Scholar
  33. Hewes CD (2009) Cell size of Antarctic phytoplankton as a biogeochemical condition. Antarct Sci 21:457–470. doi: 10.1017/s0954102009990125 CrossRefGoogle Scholar
  34. Ishikawa A, Wright SW, van den Enden RL, Davidson AT, Marchant HJ (2002) Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999/2000. Polar Biosci 15:11–26Google Scholar
  35. Jeffrey SW, Mantoura RFC, Bjornland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW et al (eds) Phytoplankton pigments in oceanography: Guideline to modern methods. UNESCO Publishing, Paris. Monogr Oceanogr Methodol 10:449–559Google Scholar
  36. Kopczynska EE, Savoye N, Dehairs F, Cardinal D, Elskens M (2007) Spring phytoplankton assemblages in the Southern Ocean between Australia and Antarctica. Polar Biol 31:77–88. doi: 10.1007/s00300-007-0335-6 CrossRefGoogle Scholar
  37. Kozlowski WA, Deutschman D, Garibotti I, Trees C, Vernet M (2011) An evaluation of the application of CHEMTAX to Antarctic coastal pigment data. Deep Sea Res Part I Oceanogr Res Pap 58:350–364. doi: 10.1016/j.dsr.2011.01.008 CrossRefGoogle Scholar
  38. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. doi: 10.1111/j.1462-2920.2009.02051.x PubMedCrossRefGoogle Scholar
  39. Landry MR, Brown SL, Selph KE, Abbott MR, Letelier RM, Christensen S, Bidigare RR, Casciotti K (2001) Initiation of the spring phytoplankton increase in the Antarctic Polar Front Zone at 170 degrees W. J Geophys Res Oceans 106:13903–13915. doi: 10.1029/1999jc000187 CrossRefGoogle Scholar
  40. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi: 10.1126/science.1179798 PubMedCrossRefGoogle Scholar
  41. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  42. Lovejoy C, Potvin M (2011) Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. J Plankton Res 33:431–444. doi: 10.1093/plankt/fbq124 CrossRefGoogle Scholar
  43. Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, Potvin M, Massana R, Pedros-Alio C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J Phycol 43:78–89CrossRefGoogle Scholar
  45. Maranon E, Holligan PM, Barciela R, Gonzalez N, Mourino B, Pazo MJ, Varela M (2001) Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar Ecol Prog Ser 216:43–56. doi: 10.3354/meps216043 CrossRefGoogle Scholar
  46. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. doi: 10.1038/nature03959 PubMedCentralPubMedGoogle Scholar
  47. Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158. doi: 10.1038/345156a0 CrossRefGoogle Scholar
  48. Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11:538. doi: 10.1186/1471-2105-11-538 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Medlin L, Zingone A (2007) A taxonomic review of the genus Phaeocystis. Biogeochemistry 83:3–18. doi: 10.1007/s10533-007-9087-1 CrossRefGoogle Scholar
  50. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16 s-like rRNA-coding regions. Gene 71:491–499PubMedCrossRefGoogle Scholar
  51. Miranda LN, Zhuang YY, Zhang H, Lin S (2012) Phylogenetic analysis guided by intragenomic SSU rDNA polymorphism refines classification of “Alexandrium tamarense” species complex. Harmful Algae 16:35–48. doi: 10.1016/j.hal.2012.01.002 CrossRefGoogle Scholar
  52. Nickrent DL, Sargent ML (1991) An overview of the secondary structure of the V4-region of eukaryotic small-subunit ribosomal-RNA. Nucleic Acids Res 19:227–235. doi: 10.1093/nar/19.2.227 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Ning XR, Lin ZL, Zhu GH, Shi JX (1996) Size-fractionated biomass and productivity of phytoplankton and particulate organic carbon in the Southern Ocean. Polar Biol 16:1–11CrossRefGoogle Scholar
  54. Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the western English channel. Appl Environ Microbiol 70:4064–4072. doi: 10.1128/aem.70.7.4064-4072.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Not F, Latasa M, Scharek R, Viprey M, Karleskind P, Balague V, Ontoria-Oviedo I, Cumino A, Goetze E, Vaulot D, Massana R (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res Part I Oceanogr Res Pap 55:1456–1473. doi: 10.1016/j.dsr.2008.06.007 CrossRefGoogle Scholar
  56. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: community ecology package. R package version 2.0-4.
  57. Olguin HF, Alder VA (2011) Species composition and biogeography of diatoms in Antarctic and Subantarctic (Argentine shelf) waters (37–76 degrees S). Deep Sea Res Part II Top Stud Oceanogr 58:139–152. doi: 10.1016/j.dsr2.2010.09.031 CrossRefGoogle Scholar
  58. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 PubMedCrossRefGoogle Scholar
  59. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Res Part I Oceanogr Res Pap 42:641–673. doi: 10.1016/0967-0637(95)00021-w CrossRefGoogle Scholar
  60. Pedros-Alio C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  61. Peeken I (1997) Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring. Deep Sea Res Part II Top Stud Oceanogr 44:261–282. doi: 10.1016/s0967-0645(96)00077-x CrossRefGoogle Scholar
  62. Pollard RT, Lucas MI, Read JF (2002) Physical controls on biogeochemical zonation in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr 49:3289–3305. doi: 10.1016/s0967-0645(02)00084-x CrossRefGoogle Scholar
  63. Priddle J, Smetacek V, Bathmann U (1992) Antarctic marine primary production, biogeochemical carbon cycles and climate-change. Philos Trans R Soc Lond Ser B Biol Sci 338:289–297. doi: 10.1098/rstb 1992.0149CrossRefGoogle Scholar
  64. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  65. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505. doi: 10.1128/aem.02409-08 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Schlüter L, Henriksen P, Nielsen TG, Jakobsen HH (2011) Phytoplankton composition and biomass across the southern Indian Ocean. Deep Sea Res Part I Oceanogr Res Pap 58:546–556. doi: 10.1016/j.dsr.2011.02.007 CrossRefGoogle Scholar
  67. Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197CrossRefGoogle Scholar
  68. Smith JL, Barrett JE, Tusnady G, Rejto L, Cary SC (2010) Resolving environmental drivers of microbial community structure in Antarctic soils. Antarct Sci 22:673–680. doi: 10.1017/s0954102010000763 CrossRefGoogle Scholar
  69. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120. doi: 10.1073/pnas.0605127103 PubMedCrossRefGoogle Scholar
  70. Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A Multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43PubMedCrossRefGoogle Scholar
  71. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x PubMedCrossRefGoogle Scholar
  72. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography—an introduction. Elsevier, BostonGoogle Scholar
  73. Tang KW, Smith WO, Elliott DT, Shields AR (2008) Colony size of Phaeocystis antarctica (Prymnesiophyceae) as influenced by zooplankton grazers. J Phycol 44:1372–1378CrossRefGoogle Scholar
  74. Tortell PD, Payne CD, Li YY, Trimborn S, Rost B, Smith WO, Riesselman C, Dunbar RB, Sedwick P, DiTullio GR (2008) CO2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35:L04605. doi: 10.1029/2007gl032583 CrossRefGoogle Scholar
  75. Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay JE (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70. doi: 10.3354/ame01257 CrossRefGoogle Scholar
  76. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  77. Wolf C, Frickenhaus S, Kilias ES, Peeken I, Metfies K (2013) Regional variability in eukaryotic protist communities in the Amundsen Sea. Antarc Sci 25:741–751. doi: 10.1017/S0954102013000229 Google Scholar
  78. Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, Nash GV (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797–808CrossRefGoogle Scholar
  79. Wright SW, Van Den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80 degrees E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II 57:758–778 CrossRefGoogle Scholar
  80. Wulff A, Wangberg SA (2004) Spatial and vertical distribution of phytoplankton pigments in the eastern Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr 51:2701–2713. doi: 10.1016/j.dsr2.2001.01.002 CrossRefGoogle Scholar
  81. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92. doi: 10.1016/j.femsec.2004.10.006 PubMedCrossRefGoogle Scholar
  82. Zingone A, Chrétiennot-Dinet MJ, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis cordata and P-jahnii (Prymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337. doi: 10.1046/j.1529-8817.1999.3561322 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Wolf
    • 1
    Email author
  • Stephan Frickenhaus
    • 1
  • Estelle S. Kilias
    • 1
  • Ilka Peeken
    • 1
    • 2
  • Katja Metfies
    • 1
  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.MARUM, Center for Marine Environmental SciencesUniversity of BremenBremenGermany

Personalised recommendations