Polar Biology

, Volume 37, Issue 2, pp 237–249 | Cite as

Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland

  • Michelle Schollert
  • Sebrina Burchard
  • Patrick Faubert
  • Anders Michelsen
  • Riikka Rinnan
Original Paper

Abstract

Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions in the atmosphere, leading to the formation of secondary organic aerosols and longer lifetime of methane. Global models of BVOC emissions have assumed minimal emissions from the high latitudes. However, measurements from this region are lacking, and studies from the high arctic are yet to be published. This study aimed to obtain estimates for BVOC emissions from the high arctic, and hereby to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in four vegetation types dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and a mixture of Kobresia myosuroides, Dryas spp. and Poa arctica. Emissions were measured by an enclosure technique and collection of volatiles into adsorbent cartridges in August. Volatiles were analyzed by gas chromatography–mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica heath. Monoterpene and sesquiterpene emissions were especially associated with C. tetragona heath. Total observed emissions were comparable in magnitude to emissions previously found in the subarctic, whereas isoprene emissions were lower. This study shows that considerable amounts of BVOCs are emitted from the high arctic. The results are also of importance as the emissions from this region are expected to increase in the future as a result of the predicted climate warming in the high arctic. We suggest further studies to assess the effects of climate changes in the region in order to gain new knowledge and understanding of future global BVOC emissions.

Keywords

Biogenic volatile organic compounds VOC Isoprene Monoterpene Sesquiterpene Arctic ecosystems 

Supplementary material

300_2013_1427_MOESM1_ESM.docx (158 kb)
Supplementary material 1 (DOCX 157 kb)

References

  1. Aaltonen H, Pumpanen J, Pihlatie M, Hakola H, Hellén H, Kulmala L, Vesala T, Bäck J (2011) Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric For Meteorol 151(6):682–691. doi:10.1016/j.agrformet.2010.12.010 CrossRefGoogle Scholar
  2. ACIA (2005) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  3. Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, Hansen BU (2009) Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct Antarct Alp Res 41(2):164–173. doi:10.1657/1938-4246-41.2.164 CrossRefGoogle Scholar
  4. Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10(1):150–162. doi:10.1055/s-2007-965247 PubMedCrossRefGoogle Scholar
  5. Ashworth K, Boissard C, Folberth G, Latière J, Schurgers G (2013) Global modelling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 451–487CrossRefGoogle Scholar
  6. Bäckstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D (2008) Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus B 60(2):226–237. doi:10.1111/j.1600-0889.2007.00331.x CrossRefGoogle Scholar
  7. Bäckstrand K, Crill PM, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Bastviken D (2010) Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7(1):95–108CrossRefGoogle Scholar
  8. Bay C (1998) Vegetation mapping of Zackenberg valley, Northeast Greenland. Danish Polar Center and Botanical Museum, University of CopenhagenGoogle Scholar
  9. Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula × tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Change Biol 13:2538–2550CrossRefGoogle Scholar
  10. Böcher TW, Holmen K, Jakobsen K (1968) The flora of Greenland. P Haase & Son, CopenhagenGoogle Scholar
  11. Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552PubMedCrossRefGoogle Scholar
  12. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15(3):167–175. doi:10.1016/j.tplants.2009.12.002 PubMedCrossRefGoogle Scholar
  13. Duhl TR, Helmig D, Guenther A (2008) Sesquiterpene emissions from vegetation: a review. Biogeosciences 5(3):761–777CrossRefGoogle Scholar
  14. Ekberg A, Arneth A, Hakola H, Hayward S, Holst T (2009) Isoprene emission from wetland sedges. Biogeosciences 6(4):601–613CrossRefGoogle Scholar
  15. Ekberg A, Arneth A, Holst T (2011) Isoprene emission from Sphagnum species occupying different growth positions above the water table. Boreal Environ Res 16(1):47–59Google Scholar
  16. Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L (2008) Soil and plant community-characteristics and dynamics at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-arctic ecosystem dynamics in a changing climate, vol 40., Advances in ecological researchAcademic Press, London, pp 223–248CrossRefGoogle Scholar
  17. Ellebjerg SM, Tamstorf MP, Illeris L, Michelsen A, Hansen BU (2008) Inter-annual variability and controls of plant phenology and productivity at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-arctic ecosystem dynamics in a changing climate, vol 40., Advances in ecological researchAcademic Press, London, pp 249–273CrossRefGoogle Scholar
  18. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang S, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland Ø, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175PubMedCrossRefGoogle Scholar
  19. Fares S, Mahmood T, Liu S, Loreto F, Centritto M (2011) Influence of growth temperature and measuring temperature on isoprene emission, diffusive limitations of photosynthesis and respiration in hybrid poplars. Atmos Environ 45:155–161CrossRefGoogle Scholar
  20. Faubert P, Tiiva P, Rinnan Å, Michelsen A, Holopainen JK, Rinnan R (2010a) Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. New Phytol 187:199–208. doi:10.1111/j.1469-8137.2010.03270.x PubMedCrossRefGoogle Scholar
  21. Faubert P, Tiiva P, Rinnan Å, Räty S, Holopainen JK, Holopainen T, Rinnan R (2010b) Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms. Atmos Environ 44:4432–4439CrossRefGoogle Scholar
  22. Faubert P, Tiiva P, Michelsen A, Rinnan Å, Ro-Poulsen H, Rinnan R (2012) The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile. Plant Soil 352:199–215. doi:10.1007/s11104-011-0989-2 CrossRefGoogle Scholar
  23. Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 1–20CrossRefGoogle Scholar
  24. Fowler D, Amann M, Anderson R, Ashmore M, Deplegde MH, Derwent D, Grennfelt P, Hewitt CN, Hov O, Jenkin M, et al (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Policy document 15/08. Royal Society, LondonGoogle Scholar
  25. Fuentes JD, Gu L, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. B Am Meteorol Soc 81(7):1537–1575. doi:10.1175/1520-0477(2000)0812.3.CO;2 CrossRefGoogle Scholar
  26. Geron C, Guenther A, Greenberg J, Karl T, Rasmussen R (2006) Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmos Environ 40:1645–1660CrossRefGoogle Scholar
  27. Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 315–355CrossRefGoogle Scholar
  28. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617. doi:10.1029/93JD00527 CrossRefGoogle Scholar
  29. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100(D5):8873–8892CrossRefGoogle Scholar
  30. Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birth (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32(10):1825–1833CrossRefGoogle Scholar
  31. Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B (2008) Present-day climate at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland, vol 40., Advances in ecological researchAcademic Press, London, pp 249–273Google Scholar
  32. Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman M, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021 PubMedCrossRefGoogle Scholar
  33. Holst T, Arneth A, Hayward S, Ekberg A, Mastepanov M, Jackowicz-Korczynski M, Friborg T, Crill PM, Backstrand K (2010) BVOC ecosystem flux measurements at a high latitude wetland site. Atmos Chem Phys 10(4):1617–1634CrossRefGoogle Scholar
  34. Insam H, Seewald M (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213. doi:10.1007/s00374-010-0442-3 CrossRefGoogle Scholar
  35. Jardine K, Abrell L, Kure SA, Huxman T, Ortega J, Guenther A (2010) Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmos Chem Phys 10:12191–12206dCrossRefGoogle Scholar
  36. Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52(1):101–106. doi:10.2307/3565988 CrossRefGoogle Scholar
  37. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33(1):23–88CrossRefGoogle Scholar
  38. Klinger LF, Li QJ, Guenther AB, Greenberg JP, Baker B, Bai JH (2002) Assessment of volatile organic compound emissions from ecosystems of China. J Geophys Res Atmos 107(D21):ACH16-1–ARH 16-21Google Scholar
  39. Körner C, Paulsen J, Pelaez-Riedl S (2003) A Bioclimatic characterisation of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DA (eds) Alpine biodiversity in Europe, vol 167, ecological studies. Springer, Berlin, pp 13–28. doi:10.1007/978-3-642-18967-8_2 CrossRefGoogle Scholar
  40. Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen VM (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 489–508CrossRefGoogle Scholar
  41. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183(1):27–51. doi:10.1111/j.1469-8137.2009.02859.x PubMedCrossRefGoogle Scholar
  42. Lathière J, Hauglustaine DA, De Noblet-Ducoudré N, Krinner G, Folberth GA (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32:L20818CrossRefGoogle Scholar
  43. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40(7):1629–1636. doi:10.1016/j.soilbio.2008.01.018 CrossRefGoogle Scholar
  44. Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 119–150CrossRefGoogle Scholar
  45. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166PubMedCrossRefGoogle Scholar
  46. Meltofte H, Rasch M (2008) The study area at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland, vol 40., Advances in ecological researchAcademic Press, London, pp 101–110CrossRefGoogle Scholar
  47. Meltofte H, Thing H (eds) (1996) Zackenberg ecological research operations, 1st Annual Report, 1995. Danish Polar Center, Ministry of Research and Technology, CopenhagenGoogle Scholar
  48. Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 153–180CrossRefGoogle Scholar
  49. Ortega J, Helmig D (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques—part A. Chemosphere 72(3):343–364PubMedCrossRefGoogle Scholar
  50. Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emissions by plants. Biol Plantarum 44(4):481–487CrossRefGoogle Scholar
  51. Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: Responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 209–235CrossRefGoogle Scholar
  52. Potosnak MJ, Baker BM, LeStourgeon L, Disher SM, Griffin KL, Bret-Harte MS, Starr G (2013) Isoprene emissions from a tundra ecosystem. Biogeosciences 10(2):871–889. doi:10.5194/bg-10-871-2013 CrossRefGoogle Scholar
  53. Rinnan R, Rinnan A, Faubert P, Tiiva P, Holopainen JK, Michelsen A (2011) Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs. Environ Exp Bot 72(3):377–386. doi:10.1016/j.envexpbot.2010.11.006 CrossRefGoogle Scholar
  54. Rinnan R, Gierth D, Bilde M, Rosenørn T, Michelsen A (2013) Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Front Microbiol 4:224. doi:10.3389/fmicb.2013.00224 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rinne J, Bäck J, Hakola H (2009) Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions. Boreal Environ Res 14(4):807–826Google Scholar
  56. Sanadze GA (2004) Biogenic isoprene (a review). Russ J Plant Physiol 51(6):729–741CrossRefGoogle Scholar
  57. Scherrer D, Körner C (2009) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol. doi:10.1111/j.1365-2486.2009.02122.x Google Scholar
  58. Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012) High arctic plant community responses to a decade of ambient warming. Biodiversity 13(3–4):191–199CrossRefGoogle Scholar
  59. Sharkey T, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95(3):328–333. doi:10.1007/BF00320984 CrossRefGoogle Scholar
  60. Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot-London 101:5–18. doi:10.1093/aob/mcm240 CrossRefGoogle Scholar
  61. Sigsgaard C, Thorsøe K, Lund M, Kandrup N, Larsen M, Falk JM, Hansen BU, Ström L, Christensen TR, Tamstorf MP (2010) Zackenberg basic. The ClimateBasis and GeoBasis programmes. In: Jensen LM, Rasch M (eds) Zackenberg ecological research operations, 15th annual report, 2009. National Environmental Research Institute, Aarhus University, Denmark, pp 12–35Google Scholar
  62. Smolander A, Ketola RA, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442CrossRefGoogle Scholar
  63. Staudt M, Bertin N, Frenzel B, Seufert G (2000) Seasonal variation in amount and composition of monoterpenes emitted by young pinus pinea trees—implications for emission modeling. J Atmos Chem 35(1):77–99. doi:10.1023/A:1006233010748 CrossRefGoogle Scholar
  64. Svoboda J (2009) Evolution of plant cold hardiness and its manifestation along the latitudinal gradient in the Canadian arctic. In: Gusta L, Wisniewski M, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CABI, Cambridge, MA, pp 140–162CrossRefGoogle Scholar
  65. Tiiva P, Rinnan R, Faubert P, Rasanen J, Holopainen T, Kyro E, Holopainen JK (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355. doi:10.1111/j.1469-8137.2007.02164.x PubMedCrossRefGoogle Scholar
  66. Tiiva P, Faubert P, Michelsen A, Holopainen T, Holopainen JK, Rinnan R (2008) Climatic warming increases isoprene emission from a subarctic heath. New Phytol 180(4):853–863. doi:10.1111/j.1469-8137.2008.02587.x PubMedCrossRefGoogle Scholar
  67. Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7(1):139–141. doi:10.4161/psb.7.1.18521 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291PubMedCrossRefGoogle Scholar
  69. Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Members of the CAVM team (2005) The circumpolar arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  70. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Lee Turner P, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103(5):1342–1346PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michelle Schollert
    • 1
    • 2
  • Sebrina Burchard
    • 1
  • Patrick Faubert
    • 3
  • Anders Michelsen
    • 1
    • 2
  • Riikka Rinnan
    • 1
    • 2
  1. 1.Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Department of Geoscience and Natural Resource Management, Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
  3. 3.Chaire en Éco-conseil, Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations