Polar Biology

, Volume 38, Issue 1, pp 99–114 | Cite as

Impact of early food input on the Arctic benthos activities during the polar night

  • Nathalie Morata
  • Emma Michaud
  • Maria Włodarska-Kowalczuk
Original Paper


In Arctic areas where benthic primary production does not occur or is not sufficient, the benthos depends on episodic events of food inputs from overlying waters, in particular spring ice algal and phytoplankton blooms. Climate change is expected to lead to earlier ice melts and subsequently to earlier spring blooms and food inputs to the benthos. The goal of the present study was to characterize benthic community structure and activities during the polar night in Rijpfjorden, a high Arctic fjord from Svalbard, and to assess experimentally how earlier climate-induced food inputs can impact these benthic activities. Two concentrations of freeze-dried phytoplankton were added to intact sediment cores, while additional control cores did not receive food addition. Sediment oxygen demand (SOD), nutrient fluxes, bioturbation coefficients (as indicator of benthic activities) and contents of organic matter and pigments in sediments were measured at the beginning of the experiment and 9 days after the addition. In the initial polar night conditions, SOD was ~4.2 mmol O2 m−2 d−1, bioturbation coefficients were null for biodiffusion and 1.08 y−1 for bioadvection, and benthic biomass was 1.36 g 0.1 m−2. In the cores with food addition, the phytoplankton added was quickly consumed, and after 9 days, SOD and bioturbation were higher in the food treatments compared with the control cores, both being higher with higher food concentration. This study documented a clear and quick response in benthic activities following the food input, suggesting that in winter/early spring, Arctic benthos may depend on early food inputs for its activities. Climate-induced changes in food supply to the seafloor could have drastic consequences for the benthic ecosystem functioning.


Svalbard Pelagic–benthic coupling Bioturbation Biogeochemical fluxes Feeding experiment Ecosystem functioning 



The authors especially want to thank the chief scientist, S. Falk-Petersen, the co-chief scientist, E. Halvorsen and the crew of the R/V Helmer Hanssen. Thank you to R. Corvaisier, P. Lamy, M. Legoff and A. Masson-Stroesser for their help during nutrient, carbon, pigment and luminophore analyses, and to E. Bailey for advice on the experimental design. This study was made possible by funding from the “Agence Nationale de Recherche” (11 PDOC 018 01 to NM), the “Labex Mer” (ICAR to NM), the “Centre National de la Recherche Scientifique” and the University of Tromsø (the polar night cruise to SFP). MWK was supported by the Institute of Oceanology Polish Academy of Sciences. This work is a contribution to the ANR-ECOTAB and ICAR projects, the Polar Night Cruise project and to the Arctos Network.


  1. Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345CrossRefGoogle Scholar
  2. Ambrose WG, Renaud PE (1995) Benthic response to water column productivity patterns—evidence for benthic-pelagic coupling in the northeast water polynya. J Geophys Res Ocean 100 (C3):4411–4421Google Scholar
  3. Ambrose WG Jr, Carroll ML, Greenacre M, Thorrold SR, McMahon KW (2006) Variation in Serripes groenlandicus (Bivalvia) growth in a Norwegian high-Arctic fjord: evidence for local- and large-scale climatic forcing. Glob Change Biol 12:1595–1607CrossRefGoogle Scholar
  4. Aminot A, Kérouel R (2007a) Ammonium: dosage fluorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 114–122Google Scholar
  5. Aminot A, Kérouel R (2007b) Nitrates: dosage colorimétrique par SFA. In: QUAE (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 77–85Google Scholar
  6. Aminot A, Kérouel R (2007c) Phospates: dosage colorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 123–131Google Scholar
  7. Aminot A, Kérouel R (2007d) Silicates: dosage colorimétrique par SFA. In: Quae (ed) Dosage automatique des nutriments dans les eaux marines; methodes en flux continu, pp 132–139Google Scholar
  8. Arrigo KR, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res Oceans 116 (C09011) Google Scholar
  9. Bauerfeind A, Garrity C, Krumbholz M, Ramseier RO, Vob M (1997) Seasonal variability of sediment trap collections in the Northeast Water Polynya. Part 2. Biochemical and microscopic composition of sedimenting matter. J Mar Syst 10:371–389CrossRefGoogle Scholar
  10. Bender K, Davis WR (1984) The effect of feeding by Yoldia limatula on bioturbation. Ophelia 23:91–100CrossRefGoogle Scholar
  11. Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2008) Diel vertical migration of Arctic zooplankton during the polar night. Biology Lett 5:69–72Google Scholar
  12. Carroll ML, Ambrose WGJ (2012) Benthic infaunal community variability on the Northern Svalbard Shelf. Polar Biol 35:1259–1272CrossRefGoogle Scholar
  13. Carroll ML, Carroll J (2003) The Arctic Seas. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell Publishing, Oxford, pp 126–156Google Scholar
  14. Christensen B, Vedel A, Kristensen A (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding Nereis diversicolor and non suspension-feeding Nereis virens polychaetes. Mar Ecol Prog Ser 192:203–217CrossRefGoogle Scholar
  15. Clough LM, Ambrose WG, Cochran JK, Barnes C, Renaud PE, Aller RC (1997) Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean. Deep-Sea Res II 44(8):1683–1704CrossRefGoogle Scholar
  16. Clough LM, Renaud P, Ambrose WG (2005) Impact of water depth, sediment pigment concentration, and benthic macrofauna biomass on sediment oxygen demand in the Western Arctic Ocean. Can J Fish Aquat Sci 62:1756–1765CrossRefGoogle Scholar
  17. Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Clim 16(3):498–510Google Scholar
  18. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703CrossRefGoogle Scholar
  19. D’Andrea AF, Lopez GR, Aller RC (2004) Rapid physical and biological particle mixing on an intertidal sandflat. J Mar Res 62:67–92CrossRefGoogle Scholar
  20. de Goeij P, Luttikhuizen P (1998) Deep-burying reduces growth in intertidal bivalves: field and mesocosm experiments with Macoma balthica. J Exp Mar Biol Ecol 228:327–337CrossRefGoogle Scholar
  21. Duchene JC, Rosenberg R (2001) Marine benthic faunal activity on a sediment surface assessed by video numerical tracking. Mar Ecol Prog Ser 223:113–119CrossRefGoogle Scholar
  22. Dunton KH, Goodall JL, Schonberg SV, Grebmeier JM, Maidment DR (2005) Multi-decadal synthesis of benthic-pelagic coupling in the western arctic: role of cross-shelf advective processes. Deep-Sea Res II 52(24–26):3462–3477CrossRefGoogle Scholar
  23. Duport E, Gilbert F, Poggiale J-C, Dedieu K, Rabouille C, Stora G (2007) Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci 72:522–533CrossRefGoogle Scholar
  24. Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284Google Scholar
  25. Feder HM, Matheke GEM (1980) Subtidal benthos. In: Colonell JW (ed) Port Valdez, Alaska: environmental studies 1976–1979. University of Alaska, Fairbanks, AK, pp 235–324Google Scholar
  26. Forest A, Sampei M, Hattori H, Makabe R, Sasaki H, Fukuchi M, Wassmann P, Fortier L (2007) Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges. J Mar Syst 68:39–54CrossRefGoogle Scholar
  27. Forest A, Sampei M, Makabe R, Sasaki H, Barber DG, Gratton Y, Wassmann P, Fortier L (2008) The annual cycle of particulate organic carbon export in Franklin Bay (Canadian Arctic): environmental control and food web implications. J Geophys Res Ocean 113:C03S05Google Scholar
  28. Forest A, Bélanger S, Sampei M, Sasaki H, Catherine L, Fortier L (2010) Three-year assessment of particulate organic carbon fluxes in Amundsen Gulf (Beaufort Sea): satellite observations and sediment trap measurements. Deep-Sea Res I 57:125–142CrossRefGoogle Scholar
  29. François F, Gérino M, Stora G, Durbec J-P, Poggiale J-C (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136CrossRefGoogle Scholar
  30. Gihring TM, Lavik G, Kuypers MMM, Kostka JE (2010) Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway). Limnol Oceanogr 55(2):740–752CrossRefGoogle Scholar
  31. Gilbert F, Aller RC, Hulth S (2003) The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: an experimental simulation and model approach. J Mar Res 61:101–125CrossRefGoogle Scholar
  32. Gilbert F, Hulth S, Grossi V, Poggiale J-C, Desrosiers G, Rosenberg R, Gérino M, François-Carcaillet F, Michaud E, Stora G (2007) Sediment reworking activity rates and patterns in some marine benthic species from the Gullmar Fjord (Western Sweden). Importance of faunal biovolume. J Exp Mar Biol Ecol 348:133–144CrossRefGoogle Scholar
  33. Glud RN, Holby O, Hoffmann F, Canfield DE (1998) Benthic mineralization and exchange in Arctic sediment (Svalbard, Norway). Mar Ecol Prog Ser 173:237–251CrossRefGoogle Scholar
  34. Glud RN, Risgaard-Petersen N, Thamdrup B, Fossing H, Rysgaard S (2000) Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Mar Ecol Prog Ser 206:59–71CrossRefGoogle Scholar
  35. Gooday AJ (2002) Organic matter to the Ocean floor: a review. J Oceanogr 58:305–332CrossRefGoogle Scholar
  36. Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190Google Scholar
  37. Grant J, Hargrave B, MacPherson P (2002) Sediment properties and benthic-pelagic coupling in the North Water. Deep-Sea Res II 49:5259–5275CrossRefGoogle Scholar
  38. Grebmeier JM (2012) Shifting Patterns of Life in the Pacific Arctic and Sub-Arctic Seas. Ann Rev Mar Sci 4:63–78PubMedCrossRefGoogle Scholar
  39. Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:295–518CrossRefGoogle Scholar
  40. Grebmeier JM, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57CrossRefGoogle Scholar
  41. Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006a) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361CrossRefGoogle Scholar
  42. Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006b) A major ecosystem shift in the Northern Bering Sea. Science 311:1461PubMedCrossRefGoogle Scholar
  43. Hall POJ, Hulth S, Hulthe G, Landen A, Tenberg A (1996) Benthic nutrient fluxes on a Basin-Wide scale in the Skagerrak (North-Eastern North Sea). J Sea Res 35(1–3):123–137Google Scholar
  44. Hansen JLS, Josefson AB (2004) Ingestion by deposit-feeding macro-zoobenthos in the aphotic zone does not affect the pool of live pelagic diatoms in the sediment. J Exp Mar Biol Ecol 308:59–84CrossRefGoogle Scholar
  45. Holm-Hansen O, Lorenzen CJ, Holms RW, Strickland JD (1965) Fluorometric determination of chlorophyll. J Conseil Int pour l’Exploration de la Mer 30:3–15CrossRefGoogle Scholar
  46. Hulth S (1994) Arctic sediments (Svalbard): consumption and microdistribution of oxygen. Mar Chem 46(3):293–316CrossRefGoogle Scholar
  47. Jorgensen BB, Glud RN, Holby O (2005) Oxygen distribution and bioirrigation in Arctic fjord sediments (svalbard, Barents Sea). Mar Ecol Prog Ser 292:85–95CrossRefGoogle Scholar
  48. Juul-Pedersen T, Michel C, Gosselin M, Seuthe L (2008) Seasonal changes in the sinking export of particular material, under first-year sea ice on the Mackenzie Shelf (western Canadian Arctic). Mar Ecol Prog Ser 353:13–25CrossRefGoogle Scholar
  49. Kahru M, Brotas W, Manzano-Sarabia M, Mitchel BG (2011) Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol 17:1722–1739CrossRefGoogle Scholar
  50. Kedra M, Kulinski K, Walkusz W, Legezyska J (2012) The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment. Estuar Coast Shelf Sci 114:183–191CrossRefGoogle Scholar
  51. Kennedy P, Kennedy H, Papadimitriou S (2005) The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun Mass Spectrom 19(8):1063–1068PubMedCrossRefGoogle Scholar
  52. Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2004) The Benthos of the Arctic seas and its Role for the Organic Carbon Cycle at the Seafloor. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 139–167Google Scholar
  53. Konovalov D, Renaud PE, Berge J, Voronkov AY, Cochrane SKJ (2010) Contaminants, benthic communities and bioturbation : potential for PAH mobilisation in Arctic sediments. Chem Ecol 26(3):197–208CrossRefGoogle Scholar
  54. Kostka JE, Thamdrup B, Glud RN, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21Google Scholar
  55. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICES at records: 1958-2008. Geophys Res Lett 36:L15501CrossRefGoogle Scholar
  56. Lepore K, Moran SB, Grebmeier JM, Cooper LW, Lalande C, Maslowski W, Hill V, Bates NR, Hansell DA, Mathis JT, Kelly RP (2007) Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea. J Geophys Res Ocean 112:C10. doi: 10.1029/2006jc003555 Google Scholar
  57. Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity and quality. Prog Oceanogr 90(1–4):18–32CrossRefGoogle Scholar
  58. Link H, Archambault P, Tamelander T, Renaud PE, Piepenburg D (2011) Spring-to-summer changes and regional variability of benthic processes in the western Canadian Arctic. Polar Biol 34:2025–2038CrossRefGoogle Scholar
  59. Mahaut ML, Graf G (1987) A luminophores tracer technique for bioturbation studies. Oceanol Acta 10(3):323–328Google Scholar
  60. Maire O, Duchêne JC, Gremare A, Malyuga VS, Meysman FJR (2007) A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. J Exp Mar Biol Ecol 343:21–36CrossRefGoogle Scholar
  61. Manheim FT, Dwight L, Belastock RA (1974) Porosity, density, grain density, and related physical properties of sediments from the Red Sea Drill Cores. In: Whitmarsh RB, WOE, Ross DA (ed) initial reports of the deep-sea drilling project. US Government Printing Office, pp 887–907Google Scholar
  62. McClintic M, DeMaster DJ, Thomas CJ, Smith CR (2008) Testing the FOODBANCS hypothesis: seasonal variations in near-bottom particle flux, bioturbation intensity, and deposit feeding based on 234Th measurements. Deep-Sea Res II 55:2425–2437CrossRefGoogle Scholar
  63. McMahon KW, Ambrose WG Jr, Johnson BJ, Sun M-Y, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14CrossRefGoogle Scholar
  64. Michaud E (2006) Rôle de la diversité fonctionnelle de la communauté à Macoma balthica (Estuaire du Saint-Laurent, Québec, Canada) sur les flux biogéochimiques à l’interface eau-sédiment et sur le mélange particulaire. PhD Thesis. Université du Québec à Rimouski et Université de la Méditerranée, Aix-Marseille II, 237pGoogle Scholar
  65. Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the M. balthica community on sediment oxygen uptake. J Exp Mar Biol Ecol 326:77–88CrossRefGoogle Scholar
  66. Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2006) The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol 337:178–189CrossRefGoogle Scholar
  67. Michaud E, Desrosiers G, Aller RC, Mermillod-Blondin F, Sundby B, Stora G (2009) Spatial interactions in the Macoma balthica community control biogeochemical fluxes at the sediment-water interface and microbial abundances. J Mar Res 61(1):43–70CrossRefGoogle Scholar
  68. Michaud E, Aller RC, Stora G (2010) Sedimentary organic matter distributions and burrowing activity: natural patterns and experimental artifacts. Estuar Coast Shelf Sci 90:21–34CrossRefGoogle Scholar
  69. Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Mar Ecol Prog Ser 300:3–19CrossRefGoogle Scholar
  70. Morata N, Renaud PE (2008) Sedimentary pigments in the western Barents Sea: a reflection of the pelagic-benthic coupling? Deep-Sea Res II 55:2381–2389CrossRefGoogle Scholar
  71. Morata N, Renaud PE, Brugel S, Hobson KA, Johnson BJ (2008) Spatial and seasonal variations in the pelagic-benthic coupling of the southeastern Beaufort Sea revealed by sedimentary biomarkers. Mar Ecol Prog Ser 371:47–63CrossRefGoogle Scholar
  72. Morata N, Poulin M, Renaud PE (2011) A multiple biomarker approach to track the fate of an ice algal bloom. Polar Biol 34:101–112CrossRefGoogle Scholar
  73. Nogaro G, Charles F, de Mendonca JB, Mermillod-Blondin F, Stora G, Francois-Carcaillet F (2008) Food supply impacts sediment reworking by Nereis diversicolor. Hydrobiologia 598:403–408CrossRefGoogle Scholar
  74. Noji TT, Rey F, Miller LA, Borsheim KY, Urban-Rich J (1999) Fate of biogenic carbon in the upper 200 m of the central Greenland Sea. Deep-Sea Res II 46:1497–1509CrossRefGoogle Scholar
  75. Ouelette D, Desrosiers G, Gagne JP, Gilbert F, Poggiale JC, Blier P, Stora G (2004) Effects of temperature or in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar Ecol Prog Ser 266:185–193CrossRefGoogle Scholar
  76. Pawłowska J, Włodarska-Kowalczuk M, Zajączkowski M, Nygård H, Berge J (2011) Seasonal variability of meio- and macrobenthic standing stocks and diversity in an Arctic fjord (Adventfjorden, Spitsbergen). Polar Biol 34:833–845CrossRefGoogle Scholar
  77. Pearson TH (2001) Functional group ecology in the soft-sediment marine benthos: the role of bioturbation. Oceanogr Mar Biol A Rev 39:233–267Google Scholar
  78. Perrette M, Yool A, Quartly GD, Popova EE (2011) Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8:515–524CrossRefGoogle Scholar
  79. Pfannkuche O, Thiel H (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard shelf and in the Nansen Basin. Polar Biol 7(5):253–266CrossRefGoogle Scholar
  80. Piepenburg D, Blackburn TH, Vondorrien CF, Gutt J, Hall POJ, Hulth S, Kendall MA, Opalinski KW, Rachor E, Schmid MK (1995) Partitioning of benthic community respiration in the Arctic (Northwestern Barents Sea). Mar Ecol Prog Ser 118(1–3):199–213CrossRefGoogle Scholar
  81. Piepenburg D, Ambrose WG Jr, Brandt A, Renaud PE, Ahrens MJ, Jensen P (1997) Benthic community patterns reflect water column processes in the Northeast Water polynya (Greenland). J Mar Syst 10(1–4):467–482CrossRefGoogle Scholar
  82. Polyakov IV, Timokov LA, Alexeev VA, Bacon S, Dimitrenko IA, Fortier L, Frolov IE, Gascard J-C, Hansen E, Ivanov VV et al (2010) Arctic Ocean warming contributes to reduced Polar ice cap. J Phys Oceanogr 40(2):743–756Google Scholar
  83. Reigstad M, Riser CW, Wassmann P, Ratkova T (2008) Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea. Deep-Sea Res II 55(20–21):2308–2319CrossRefGoogle Scholar
  84. Renaud PE, Morata N, Ambrose WG Jr, Bowie JJ, Chiuchiolo A (2007a) Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J Exp Mar Biol Ecol 349:248–260CrossRefGoogle Scholar
  85. Renaud PE, Riedel A, Michel C, Morata N, Gosselin M, Juul-Pedersen T, Chiuchiolo A (2007b) Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic? J Mar Syst 67:1–12CrossRefGoogle Scholar
  86. Renaud PE, Morata N, Carroll ML, Denisenko SG, Reigstad M (2008) Pelagic-benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res II 55:2372–2380CrossRefGoogle Scholar
  87. Rowe GT, Sibuet M, Demings J, Khripounoff A, Tietjen J, Mcko S, Theroux R (1991) ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar Ecol Prog Ser 79:99–114CrossRefGoogle Scholar
  88. Rowe GT, Borland GS, Escobar Briones EG, Cruz-Kaegi ME, Newton A, Piepenburg D, Walsh I, Deming J (1997) Sediment community biomass and respiration in the Northeast Water Polynya, Greenland: a numerical simulation of benthic lander and spade corer data. J Mar Syst 10:497–515CrossRefGoogle Scholar
  89. Rysgaard S, Thamdrup B, Risgaard-Petersen N, Fossing H, Berg P, Christensen JP, Dalsgaard T (1998) Seasonal carbon and nutrient mineralization in a high Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 175:261–276CrossRefGoogle Scholar
  90. Rysgaard S, Christensen PB, Sorensen MV, Funch P, Berg P (2000) Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland. Aquat Microb Ecol 21:59–71CrossRefGoogle Scholar
  91. Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T (2004) Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr 49(5):1493–1502CrossRefGoogle Scholar
  92. Schlitzer R (2012) Ocean data view.
  93. Shick J-M (1976) Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus. Mar Biol 37:279–289CrossRefGoogle Scholar
  94. Smith KL Jr (1978) Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 m. Mar Biol 47:337–347CrossRefGoogle Scholar
  95. Smith JN, Schafer CT (1984) Bioturbation processes in continental slope and rise sediments delineated by Pb210, microfossil and textural indicators. J Mar Res 42:1117–1145CrossRefGoogle Scholar
  96. Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res II 55:2225–2244Google Scholar
  97. Stead RA, Thompson RJ (2006) The influence of an intermittent food supply on the feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). J Exp Mar Biol Ecol 332:37–48CrossRefGoogle Scholar
  98. Strickland JDH, Parsons TR (1978) A practical handbook of seawater analysis, 2nd ed. Fish Res Bd Can Bull, p 311Google Scholar
  99. Sun M-Y, Carroll ML, Ambrose WG Jr, Clough LM, Zou L, Lopez GR (2007) Rapid consumption of phytoplankton and ice algae by Arctic soft-sediment benthic communities: evidence using natural and 13C-labeled food materials. J Mar Res 65:561–588CrossRefGoogle Scholar
  100. Teal LR, Bulling MT, Parker ER, Solan M (2008) Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology 2:207–218CrossRefGoogle Scholar
  101. Turley C (2000) Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol Ecol 33:89–99PubMedGoogle Scholar
  102. Vardaro MF, Ruhl HA, Smith KLJ (2009) Climate variation, carbon flux, and bioturbation in the abyssal North Pacific. Limnol Oceanogr 54:2081–2088CrossRefGoogle Scholar
  103. Wang C, Shi L, Gerland S, Granskog MA, Renner AHH, Li Z, Hansen E, Martma T (2013) Spring sea-ice evolution in Rijpfjorden (80°N), Svalbard, from in situ measurements and ice mass-balance buoy (IMB) data. Ann Glaciol 54(62):253–260CrossRefGoogle Scholar
  104. Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 90:1–17CrossRefGoogle Scholar
  105. Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24(3):220–231CrossRefGoogle Scholar
  106. Wassmann P, Andreassen I, Reigstad M, Slagstad D (1996) Pelagic-benthic coupling in the Nordic Seas: the role of episodic events. Mar Ecol-P S Z N I 17(1–3):447–471CrossRefGoogle Scholar
  107. Werner I, Auel H (2005) Seasonal variability in abundance, respiration and lipid composition of Arctic under-ice amphipods. Mar Ecol Prog Ser 292:251–262Google Scholar
  108. Włodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fiord. Mar Ecol Prog Ser 303:31–41CrossRefGoogle Scholar
  109. Włodarska-Kowalczuk M, Renaud PE, Węsławski JM, Cochrane SKJ, Denisenko SG (2012) Species diversity, functional complexity and rarity in arctic fjordic versus open shelf benthic system. Mar Ecol Prog Ser 463:73–87CrossRefGoogle Scholar
  110. Zaborska A, Pempkowiak J, Papucci C (2006) Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Ann Environ Protect 8:79–96Google Scholar
  111. Zajączkowski M, Nygård H, Hegseth EN, Berge J (2010) Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biol 33:223–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nathalie Morata
    • 1
  • Emma Michaud
    • 1
  • Maria Włodarska-Kowalczuk
    • 2
  1. 1.LEMAR CNRS UMR 6539University of Western BrittanyPlouzanéFrance
  2. 2.Institute of Oceanology Polish Academy of ScienceSopotPoland

Personalised recommendations