Polar Biology

, Volume 37, Issue 1, pp 89–97 | Cite as

Extra-pair paternity in relation to regional and local climate in an Arctic-breeding passerine

  • Katrine S. Hoset
  • Yngve Espmark
  • Frode Fossøy
  • Bård G. Stokke
  • Henrik Jensen
  • Morten I. Wedege
  • Arne Moksnes
Original Paper


Reproductive processes are affected by local and regional climate variation. Birds breeding in the Arctic may experience strong energetic constraints, which will affect their reproductive output. Recent research has emphasized the importance of extra-pair copulation as a means of improving reproductive output. In this paper, we explore ecological and climatic determinants that may explain variation in extra-pair paternity (EPP) in an arctic-breeding passerine, the snow bunting Plectrophenax nivalis. EPP occurred in 10.8 % of the young and 20.9 % of the broods sampled from 1999 to 2003. We found that the proportion of extra-pair young in a nest was positively related to the body size and age of the social male and weakly negatively related to the local average minimum temperature prior to the onset of egg laying. These results suggest that older and larger males lost a larger share of paternity than smaller and younger males, and that the relative loss of paternity decreased with cold weather during the female’s fertile period. Large and old males spend less time mate guarding compared to small and young males and may allocate more time towards extra-pair forays, and thus lose more paternity in their own nest. Climatic conditions most likely constrain the total energy budget with less energy available for extra-pair activity in cold weather.


Extra-pair paternity Ecological effects Climatic effects Male age Male size Plectrophenax nivalis 



This study was undertaken as a part of a research project under The Royal Norwegian Society of Sciences and Letters’ Foundation (DKNVSS). It was funded by this Foundation (Grant to YE) and the Norwegian Research Council (student Grant to KSH, and MIW). The University Centre on Svalbard (UNIS) provided some logistical support. Furthermore, we are indebted to Rolf Langvatn for logistical support during our stay in Longyearbyen. We thank Tommy Haugan, Eva Hofstad, Tore K. S. Leren, Marie Lier, Mari Murtomaa and Ida A. C. Nävås for valuable help during the fieldwork, Alexandre Villers for help with illustrations and Robert Thomson, Bruce Lyon and two anonymous reviewers for helpful comments.

Ethical standards

The experiments in this study follow the standards set by the Norwegian Animal Research Authority and Norwegian Animal Welfare laws.

Supplementary material

300_2013_1412_MOESM1_ESM.pdf (229 kb)
Supplementary material 1 (PDF 229 kb)


  1. Aanes R, Sæther BE, Smith FM, Cooper EJ, Wookey PA, Oritsland NA (2002) The Arctic Oscillation predicts effects of climate change in two trophic levels in a High-arctic ecosystem. Ecol Lett 5:445–453CrossRefGoogle Scholar
  2. Badyaev AV, Ghalambor CK (2001) Evolution of life histories along elevational gradients: trade-off between parental care and fecundity. Ecology 82:2948–2960CrossRefGoogle Scholar
  3. Bangjord G, Pedersen ÅØ, Djøseland O (1999) Hekkende snøspurv i fuglekasser på Svalbard. Vår Fuglefauna 22:109–111Google Scholar
  4. Bouwman KM, Komdeur J (2005) Old female reed buntings (Emberiza schoeniclus) increase extra-pair paternity in their broods when mated to young males. Behaviour 142:1449–1463CrossRefGoogle Scholar
  5. Bouwman KM, Komdeur J (2006) Weather conditions affect levels of extra-pair paternity in the reed bunting Emberiza schoeniclus. J Avian Biol 37:238–244CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and interference: a practical information-theoretic approach, Second edn. Springer, New YorkGoogle Scholar
  7. Cercueil A, Bellemain E, Manel S (2002) PARENTE: computer program for parentage analysis. J Hered 93:458–459. doi: 10.1093/jhered/93.6.458 PubMedCrossRefGoogle Scholar
  8. Cramp S, Perrins CM (1994) Buntings and New World Warblers, vol IX. Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. Oxford University Press, Oxford, New YorkGoogle Scholar
  9. Estep LK, Mays H, Keyser AJ, Ballentine B, Hill GE (2005) Effects of breeding density and plumage coloration on mate guarding and cuckoldry in blue grosbeaks (Passerina caerulea). Can J Zool 83:1143–1148. doi: 10.1139/z05-110 CrossRefGoogle Scholar
  10. Forsman JT, Mönkkönen M (2003) The role of climate in limiting European resident bird populations. J Biogeogr 30:55–70CrossRefGoogle Scholar
  11. Gosler AG, Greenwood JJD, Baker JK, Davidson NC (1998) The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Stud 45:92–103CrossRefGoogle Scholar
  12. Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212PubMedCrossRefGoogle Scholar
  13. Guindre-Parker S, Gilchrist HG, Baldo S, Love OP (2013) Alula size signals male condition and predicts reproductive performance in an Arctic-breeding passerine. J Avian Biol 44:209–215. doi: 10.1111/j.1600-048X.2012.05817.x CrossRefGoogle Scholar
  14. Hanssen-Bauer I, Solås MK, Steffensen EL (1990) The climate of Spitsbergen. Norwegian Meterological Institute Report 39/90 KLIMA, 40 ppGoogle Scholar
  15. Hodkinson ID, Coulson SJ, Webb NR, Block W, Strathdee AT, Bale JS, Worland MR (1996) Temperature and the biomass of flying midges (Diptera: chironomidae) in the high Arctic. Oikos 75:241–248CrossRefGoogle Scholar
  16. Hoset KS, Espmark Y, Moksnes A, Haugan T, Ingebrigtsen M, Lier M (2004) Effect of ambient temperature on food provisioning and reproductive success in snow buntings Plectrophenax nivalis in the high Arctic. Ardea 92:239–246Google Scholar
  17. Hoset KS, Espmark Y, Lier M, Haugan T, Ingebrigtsen M, Moksnes A (2009) The effect of male behaviour and provisioning on breeding success of snow buntings Plectrophenax nivalis in the high Arctic. Polar Biol 32:1649–1656CrossRefGoogle Scholar
  18. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679PubMedCrossRefGoogle Scholar
  19. Hussell DJT (1985) On the adaptive basis for hatching asynchrony: brood reduction, nest failure and asynchronous hatching in Snow Buntings. Ornis Scand 16:205–212CrossRefGoogle Scholar
  20. Hutchinson JMC, Griffith SC (2008) Extra-pair paternity in the Skylark Alauda arvensis. Ibis 150:90–97CrossRefGoogle Scholar
  21. Johnsen A, Lifjeld JT (2003) Ecological constraints on extra-pair paternity in the bluethroat. Oecologia 136:476–483. doi: 10.1007/s00442-003-1286-4 PubMedCrossRefGoogle Scholar
  22. Johnsen A, Lifjeld JT, Rohde PA (1997) Coloured leg bands affect male mate-guarding behaviour in the bluethroat. Anim Behav 54:121–130PubMedCrossRefGoogle Scholar
  23. Johnson LS, Brubaker JL, Ostlind E, Balenger SL (2007) Effect of altitude on male parental expenditure in Mountain Bluebirds (Sialia currucoides): are higher-altitude males more attentive fathers? J Ornithol 148:9–16. doi: 10.1007/s10336-006-0092-2 CrossRefGoogle Scholar
  24. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x PubMedCrossRefGoogle Scholar
  25. Kempenaers B, Verheyen GR, Van den Broeck M, Burke T, Van Broeckhoven C, Dhondt AA (1992) Extra-pair paternity results from female preference for high quality males in the blue tit. Nature 357:494–496CrossRefGoogle Scholar
  26. Kingma SA, Hall ML, Peters A (2013) Breeding synchronization facilitates extrapair mating for inbreeding avoidance. Behav Ecol 24:1390–1397. doi: 10.1093/beheco/art078 CrossRefGoogle Scholar
  27. Kleven O, Marthinsen G, Lifjeld JT (2006) Male extraterritorial forays, age and paternity in the socially monogamous reed bunting (Emberiza schoeniclus). J Ornithol 147:468–473. doi: 10.1007/s10336-005-0039-z CrossRefGoogle Scholar
  28. Lehtonen PK, Primmer CR, Laaksonen T (2009) Different traits affect gain of extrapair paternity and loss of paternity in the pied flycatcher, Ficedula hypoleuca. Anim Behav 77:1103–1110. doi: 10.1016/j.anbehav.2009.01.014 CrossRefGoogle Scholar
  29. Lubjuhn T, Gerken T, Brun J, Schmoll T (2007) Yearling male great tits, Parus major, suffer more strongly from cuckoldry than older males. Zoology 110:387–397. doi: 10.1016/j.zool.2007.07.005 PubMedCrossRefGoogle Scholar
  30. Lyon BE, Montgomerie RD, Hamilton LD (1987) Male parental care and monogamy in snow buntings. Behav Ecol Sociobiol 20:377–382CrossRefGoogle Scholar
  31. Møller AP, Ninni P (1998) Sperm competition and sexual selection: a meta-analysis of paternity studies of birds. Behav Ecol Sociobiol 43:345–358CrossRefGoogle Scholar
  32. Piersma T, Lindström A, Drent RH, Tulp I, Jukema J, Morrison RIG, Reneerkens J, Schekkerman H, Visser GH (2003) High daily energy expenditure of incubating shorebirds on high Arctic tundra: a circumpolar study. Funct Ecol 17:356–362CrossRefGoogle Scholar
  33. Romero LM, Soma KK, O’Reilly KM, Suydam R, Wingfield JC (1998) Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an arctic-breeding songbird. Horm Behav 33:40–47PubMedCrossRefGoogle Scholar
  34. Rubenstein DR (2007) Territory quality drives intraspecific patterns of extrapair paternity. Behav Ecol 18:1058–1064. doi: 10.1093/beheco/arm077 CrossRefGoogle Scholar
  35. Serreze MC, Carse F, Barry RG, Rogers JC (1997) Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J Clim 10:453–464. doi: 10.1175/1520-0442(1997)010<0453:ilcacf>;2 CrossRefGoogle Scholar
  36. Summers RW, Nicoll M (2004) Geographical variation in the breeding biology of the purple sandpiper calidris maritima. Ibis 146:303–313CrossRefGoogle Scholar
  37. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  38. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: Trends J Clim 13:1018–1036. doi: 10.1175/1520-0442(2000)013<1018:amitec>;2 Google Scholar
  39. Václav R, Hoi H, Blomqvist D (2003) Food supplementation affects extrapair paternity in house sparrows (Passer domesticus). Behav Ecol 14:730–735. doi: 10.1093/beheco/arg059 CrossRefGoogle Scholar
  40. van Dongen WFD, Mulder RA (2009) Multiple ornamentation, female breeding synchrony, and extra-pair mating success of golden whistlers (Pachycephala pectoralis). J Ornithol 150:607–620. doi: 10.1007/s10336-009-0371-9 CrossRefGoogle Scholar
  41. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  42. Yezerinac SM, Weatherhead PJ (1997) Extra-pair mating, male plumage coloration and sexual selection in yellow warblers (Dendroica petechia). Proc R Soc B 264:527–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katrine S. Hoset
    • 1
  • Yngve Espmark
    • 2
  • Frode Fossøy
    • 2
  • Bård G. Stokke
    • 2
  • Henrik Jensen
    • 3
  • Morten I. Wedege
    • 4
  • Arne Moksnes
    • 2
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of BiologyNorwegian University of Science and Technology, NTNUTrondheimNorway
  3. 3.Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and Technology, NTNUTrondheimNorway
  4. 4.Norwegian Environmental AgencyTrondheimNorway

Personalised recommendations