Advertisement

Polar Biology

, Volume 36, Issue 12, pp 1709–1722 | Cite as

Community structure and photosynthetic activity of benthic biofilms from a waterfall in the maritime Antarctica

  • Carlos RocheraEmail author
  • Eduardo Fernández-Valiente
  • Bart Van de Vijver
  • Eugenio Rico
  • Manuel Toro
  • Warwick F. Vincent
  • Antonio Quesada
  • Antonio Camacho
Original Paper

Abstract

High-energy flowing water habitats such as waterfalls are uncommon in Antarctica, though they may become more regular as temperature increase. Both high spatial and temporal environmental variability is expected on them. The extent of their biological colonization will depend on the amount of ecological strategies displayed by the surrounding biota. We report here a study on phototrophic microbenthic communities inhabiting such environment in a stream on the Byers Peninsula of Livingston Island. Five different biofilms were distinguished by colour, and were located in specific microhabitat types in the waterfall, which flowed down a steep canyon. Photosynthetic pigment content and microscopic observations demonstrated a different assemblage of chlorophytes, cyanobacteria and diatoms among them. Biofilms were not randomly distributed in the stream channel, which may be related to water flow, nutrient availability and moisture. The exopolymeric substances content, stoichiometry and pigment composition varied among biofilms, likely reflecting differences in the water and nutrients availability. The photosynthetic rates were in the range of the observed in previous studies in the site and varied according to the habitat within the stream. Communities dominated by chlorophytes were restricted to the central channel, suggesting adaptation to faster flow regime. However, cyanobacterial biofilms appeared in a great range of environmental conditions. They were rare in the central channel where water flow was greatest, but achieved large biomass stocks on submerged and even exposed sites in the splash zone at the edge of the flowing water. This study shows how Antarctic biofilms can have a large variability in community structure and biomass over short length scales, reflecting the range of microhabitats in this Antarctic waterfall ecosystem, and the potential occurrence of different strategies to overcome fluctuating conditions.

Keywords

Byers Peninsula Cyanobacteria Diatoms Exopolymeric substances Inorganic carbon uptake Stoichiometry 

Notes

Acknowledgments

Fieldwork was supported by grant REN2000-0435-ANT from the Science and Technology Ministry (Spain) to AQ. Sample processing was supported by grant CGL2005-06549-C02-02/ANT from the Spanish Ministry of Education and Science to AC, which was co-financed by European FEDER funds. We are very thankful to the UTM (Maritime Technology Unit, CSIC) and Las Palmas crew (Spanish Navy) who provided us with the logistical support to make possible this expedition. We also acknowledge the constructive comments of the reviewers.

References

  1. Anagnostidis K, Komarek J (1988) Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol Suppl Algol Stud 50–53:327–472Google Scholar
  2. APHA-AWWA-WPCF (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Ariosa Y, Carrasco D, Quesada A, Fernández-Valiente E (2006) Incorporation of different N sources and light response curves of nitrogenase and photosynthesis by cyanobacterial blooms from rice fields. Microb Ecol 51:394–403PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–259PubMedCrossRefGoogle Scholar
  5. Broady PA (1982) Taxonomy and ecology of algae in a freshwater stream in Taylor Valley, Victoria Land, Antarctica. Arch Hydrobiol Suppl Algol Stud 32:331–349Google Scholar
  6. Camacho A, de Witt R (2003) Effect of nitrogen and phosphorus additions on a benthic microbial mat from a hypersaline lake. Aquat Microb Ecol 32:261–273CrossRefGoogle Scholar
  7. Caramujo MJ, Mendes CRB, Cartaxana P, Brotas V, Boavida MJ (2008) Influence of drought on algal biofilms and meiofaunal assemblages of temperate reservoirs and rivers. Hydrobiologia 598:77–94CrossRefGoogle Scholar
  8. Chiovitti A, Higgins MJ, Harper RE, Wetherbee R (2003) The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). J Phycol 39:543–554CrossRefGoogle Scholar
  9. Davey MC (1993) Carbon and nitrogen dynamics in a maritime Antarctic stream. Freshwater Biol 30:319–330CrossRefGoogle Scholar
  10. De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472Google Scholar
  11. Denys L (1990) Fragilaria blooms in the Holocene of the western coastal plains of Belgia. In: Simola H (ed) Proceedings of the tenth international diatom symposium, Joensuu, Finland, 28th August-2nd September 1988. Koeltz Scientific Books, Koenigstein, pp 397–406Google Scholar
  12. Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 303–326CrossRefGoogle Scholar
  13. Elster J, Komarek O (2003) Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct Sci 15:189–201CrossRefGoogle Scholar
  14. Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385PubMedCrossRefGoogle Scholar
  15. Freeman C, Gresswell R, Guasch H, Hudson J, Lock MA, Reynolds B, Sabater F, Sabater S (1994) The role of drought in the impact of climatic change on the microbiota of peatland streams. Freshwater Biol 32:223–230CrossRefGoogle Scholar
  16. Guasch H, Martí E, Sabater S (1995) Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biol 33:373–383CrossRefGoogle Scholar
  17. Hawes I (1989) Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia 172:1–18CrossRefGoogle Scholar
  18. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5B. Academic Press, London, pp 209–344Google Scholar
  19. Inbar M (1995) Fluvial morphology and streamflow on Deception Island, Antarctica. Papers from symposium: Arctic and Alpine geomorphology and environmental change, Geografiska Annaler, series A. Phys Geogr 77:221–230Google Scholar
  20. Komarek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4-Nostocales. Arch Hydrobiol Suppl Algol Stud 56:247–345Google Scholar
  21. Kopalová K, Elster J, Nedbalová L, Van de Vijver B (2009) Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Res 24:113–122CrossRefGoogle Scholar
  22. Kroen WK, Rayburn WR (1984) Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J Phycol 20:253–257CrossRefGoogle Scholar
  23. Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141Google Scholar
  24. Margalef R (1960) Valeur indicatrice de la composition des pigments du phytoplankton sur la productivité, composition taxinomique et propiétés dynamiques des populations. Rapp Proc Verbo CIESM 15:277–281Google Scholar
  25. Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453PubMedCrossRefGoogle Scholar
  26. Otero A, Vincenzini M (2004) Nostoc (Cyanophyceae) goes nude: extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol 40:74–81CrossRefGoogle Scholar
  27. Pajdak-Stós A, Fialkowska E, Fyda J (2001) Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquat Microb Ecol 23:237–244CrossRefGoogle Scholar
  28. Paulsen BS, Vieira AAH (1994) Structure of the capsular and extracellular polysaccharides produced by the desmid Spondylosium panduriforme (Chlorophyta). J Phycol 30:638–641CrossRefGoogle Scholar
  29. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645PubMedCrossRefGoogle Scholar
  30. Rochera C, Justel A, Fernández-Valiente E, Bañón M, Rico E, Toro M, Camacho A, Quesada A (2010) Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biol 33:1615–1628CrossRefGoogle Scholar
  31. Rochera C, Villaescusa JA, Velázquez D, Fernández-Valiente E, Quesada A, Camacho A (2013) Vertical structure of bi-layered microbial mats from Byers Peninsula, Maritime Antarctica. Antarct Sci 25:270–276CrossRefGoogle Scholar
  32. Sabbe K, Verleyen E, Hodgson DA, Vanhoutte K, Vyverman W (2003) Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East-Antarctica. Antarct Sci 15:227–248CrossRefGoogle Scholar
  33. Simon KS, Townsend CR, Biggs BJF, Bowden WB (2004) Temporal variation of N and P uptake in 2 New Zealand streams. JN Am Benthol Soc 24:1–18CrossRefGoogle Scholar
  34. Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169PubMedCrossRefGoogle Scholar
  35. Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Vincent WF, Avendaño MC, Ariosa Y, Quesada A (2007) Limnological characteristics of freshwater ecosystems of Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). Polar Biol 30:635–649CrossRefGoogle Scholar
  36. Van de Vijver B (2008) Pinnularia obaesa sp. nov. and P. australorabenhorstii sp. nov., two new large Pinnularia (sect. Distantes) from the Antarctic King George Island (South Shetland Islands). Diatom Res 22:221–232CrossRefGoogle Scholar
  37. Van de Vijver B, Beyens L (1999) Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica): an ecological assessment. Polar Biol 22:178–188CrossRefGoogle Scholar
  38. Van de Vijver B, Mataloni G (2008) New and interesting species in the genus Luticola D.G. Mann (Bacillariophyta) from Deception Island (South Shetland Islands). Phycologia 47:451–467CrossRefGoogle Scholar
  39. Van de Vijver B, Mataloni G, Stanish L, Spaulding S (2010a) New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic Region and South Africa. Phycologia 49:22–41CrossRefGoogle Scholar
  40. Van de Vijver B, Sterken M, Vyverman W, Mataloni G, Nedbalova L, Kopalova K, Elster J, Verleyen E, Sabbe K (2010b) Four new non-marine diatom taxa from the Subantarctic and Antarctic Regions. Diatom Res 25:431–443CrossRefGoogle Scholar
  41. Van de Vijver B, Zidarova R, Sterken M, Verleyen E, de Haan M, Vyverman W, Hinz F, Sabbe K (2011) Revision of the genus Navicula s.s. (Bacillariophyceae) in inland waters of the Sub-Antarctic and Antarctic with the description of five new species. Phycologia 50:281–297CrossRefGoogle Scholar
  42. van Dongen BE, Schouten S, Sinninghe Damsté JS (2002) Carbon isotopic variability in algal and terrestrial carbohydrates. Mar Ecol Prog Ser 232:83–92CrossRefGoogle Scholar
  43. Vaughan DG, Marshall G, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J, Wolff E (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  44. Velázquez D, Rochera C, Camacho A, Quesada A (2011) Temperature effects on carbon and nitrogen metabolism in some maritime Antarctic freshwater phototrophic communities. Polar Biol 34:1045–1055CrossRefGoogle Scholar
  45. Vincent WF, Howard-Williams C (1986) Antarctic stream ecosystem: physiological ecology of a blue-green algal epilithon. Freshw Biol 16:219–233CrossRefGoogle Scholar
  46. Vincent WF, Howard-Williams C, Broady PA (1993) Microbial communities and processes in Antarctic flowing waters. In: Friedman EI (ed) Antarctic microbiology. Wiley, New York, pp 543–569Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos Rochera
    • 1
    Email author
  • Eduardo Fernández-Valiente
    • 2
  • Bart Van de Vijver
    • 3
  • Eugenio Rico
    • 4
  • Manuel Toro
    • 5
  • Warwick F. Vincent
    • 6
  • Antonio Quesada
    • 2
  • Antonio Camacho
    • 1
  1. 1.Departamento de Microbiología y Ecología, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Edificio de Investigación, Campus de BurjassotUniversitat de ValenciaBurjassotSpain
  2. 2.Departamento de BiologíaUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of Bryophytes and ThallophytesNational Botanic Garden of BelgiumMeiseBelgium
  4. 4.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  5. 5.Centro de Estudios Hidrográficos, CEDEXMadridSpain
  6. 6.Département de Biologie, Centre d’Études NordiquesUniversité LavalSainte-FoyCanada

Personalised recommendations