Polar Biology

, Volume 36, Issue 10, pp 1441–1450 | Cite as

First records of primary producers of epiglacial and supraglacial lakes in western Dronning Maud Land, Antarctica

  • Jorma Keskitalo
  • Matti Leppäranta
  • Lauri Arvola
Original Paper


Epiglacial and supraglacial lakes are characteristic lake types in Antarctica, and regardless of their mostly seasonal existence and ultraoligotrophy, some lakes have a relatively diverse microbial community. The results of water chemistry and phytoplankton, based on basic limnological methods, from five epiglacial and two supraglacial seasonal lakes are presented from western Dronning Maud Land, an area where only physical studies have been previously carried out. Electric conductivity varied mostly between 0.1 and 10 mS m−1 (25 °C), phosphorus concentration was <5 mg m−3, and nitrogen concentration was <300 mg m−3 except in some shore areas, and water pH ranged from 6 to 11. Low phytoplankton biomasses (in most cases <10 mg m−3) supported the ultraoligotrophic status of the lakes. Phytoplankton was found from both types of lakes, but less was found from supraglacial lakes. The charophyte Mesotaenium cf. berggrenii dominated the supraglacial lakes, while cyanoprokaryotes such as Gloeocapsopsis cf. magma, Planktothrix prolifica/rubescens, Nostoc cf. sphaericum, Cyanothece sp. and Phormidium sp. dominated the biomass in some epiglacial lakes. Chrysophytes (e.g. Pseudopedinella-type flagellates) were observed in both types of lakes, and they were occasionally dominant. The green alga Botryococcus braunii, some diatoms (Cyclotella sp., Diatoma tenuis, Luticola muticopsis), and non-planktonic microalgal colonies visible to the eye (incl. the cyanoprokaryote Nostoc commune) were also found. Signs of a living ecosystem with a food web were observed in one epiglacial lake, but not elsewhere, which indicates extreme circumstances in the Antarctic seasonal lakes. Altogether, only some 25 taxa were discovered.


Lakes Summer Geochemistry Phytoplankton Antarctica Dronning Maud Land 



We thank the FINNARP logistics for its support in the field campaign, with special thanks to Mr. Mika Kalakoski, expedition chief, for his help in the transportation of the samples, and to Mr. Petri Heinonen for guidance and discussions. Funding was provided for our project “Evolution of snow cover and dynamics of atmospheric deposits in the snow in the Antarctica” (#127691) by the Academy of Finland. Species identifications were proposed by the participants of a workshop of the Finnish Phytoplankton Society. Four reviewers made excellent suggestions, which helped us to improve the manuscript. The manuscript was corrected for English by Dr. John Loehr.


  1. Adams WW, Demmig-Adams B, Lange OL (1993) Carotenoid composition and metabolism in green and blue-green algal lichens in the field. Oecologia 94:576–580CrossRefGoogle Scholar
  2. Alger AS, Spaulding SA, Shupe GH, McKnight DM (1995) McMurdo LTER: species composition and spatial distribution of algal mats in Green Creek, Taylor Valley, Antarctica. Antarctic J US 30:289–291Google Scholar
  3. Arvola L, Kankaala P, Tulonen T, Ojala A (1996) Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake. Can J Fish Aquat Sci 53:1646–1662CrossRefGoogle Scholar
  4. Bormann P, Fritsche D (eds) (1995) The Schirmacher Oasis. Justus Perthes, GothaGoogle Scholar
  5. Bunt JS, Lee CC (1972) Data on the composition and dark survival of four sea-ice microalgae. Limnol Oceanogr 17:458–461CrossRefGoogle Scholar
  6. Coesel PFM, Meesters KJ (2007) Desmids of the Lowlands. Mesotaeniaceae and Desmdiaceae of the European Lowlands. KNNV Publishing, The NetherlandsGoogle Scholar
  7. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782CrossRefGoogle Scholar
  8. Garcia-Pichel F, Casteholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409CrossRefGoogle Scholar
  9. Granberg HB, Cliche P, Mattila OP, Kanto E, Leppäranta M (2009) A snow sensor experiment in Dronning Maud Land. J Glaciol 55:1041–1051CrossRefGoogle Scholar
  10. Heath CW (1988) Annual primary productivity of an Antarctic continental lake: phytoplankton and benthic algal mat production strategies. Hydrobiologia 165:77–87CrossRefGoogle Scholar
  11. Hodgson DA (2012) Antarctic lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Berlin, pp 26–31Google Scholar
  12. Hoffman MJ, Catania GA, Neumann TA, Andrews LC, Rumrill JA (2011) Links between acceleration, melting, and supraglacial lake drainage of the western Greenland ice sheet. J Geophys Res 116(F4). doi: 10.1029/2010JF001934
  13. Kärkäs E (2004) Meteorological conditions of the Basen nunatak in western Dronning Maud Land, Antarctica, during the years 1989–2001. Geophysica 40:39–52Google Scholar
  14. Kaup E (1994) Annual primary production of phytoplankton in Lake Verkhneye, Schirmacher Oasis, Antarctica. Polar Biol 14:433–439CrossRefGoogle Scholar
  15. Komárek J, Anagnostidis K (2000) Cyanoprokaryota 1. Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Reprint. SpektrumGoogle Scholar
  16. Komárek J, Anagnostidis K (2008) Cyanoprokaryota 2: Oscillatoriales. Süsswasserflora von Mitteleuropa (Freshwater flora of Central Europe) 19/2. Reprint. SpektrumGoogle Scholar
  17. Komárek J, Komárková J (2004) Taxonomic revue of the cyanoprokaryotic genera Planktothrix and Planktothricoides. Czech Phycol 4:1–18Google Scholar
  18. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1 Teil: Naviculaceae. In: Suesswasserflora Von Mitteleuropa 2/1, Fischer Verlag, StuttgartGoogle Scholar
  19. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2 Teil: Baciallariaceae, Epithemiaceae, Surirellaceae. In: Suesswasserflora Von Mitteleuropa 2/2, Fischer Verlag, StuttgartGoogle Scholar
  20. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Suesswasserflora Von Mitteleuropa 2/3, Fischer Verlag, StuttgartGoogle Scholar
  21. Leppäranta M (2009) Modelling the formation and decay of lake ice. In: George G (ed) Climate impact on European lakes. Aquat Ecol Ser 4: 63–83, Springer, GermanyGoogle Scholar
  22. Leppäranta M, Reinart A, Arst H, Erm A, Sipelgas L, Hussainov M (2003) Investigation of ice and water properties and under-ice light fields in fresh and brackish water bodies. Nordic Hydrol 34:245–266Google Scholar
  23. Leppäranta M, Terzhevik A, Shirasawa K (2010) Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia. Hydrol Res 41:50–62CrossRefGoogle Scholar
  24. Leppäranta M, Järvinen O, Mattila OP (2013) Structure and life cycle of supraglacial lakes in the Dronning Maud Land. Antarct Sci 25:457–467. doi: 10.1017/S0954102012001009 CrossRefGoogle Scholar
  25. Lizotte MP (2008) Phytoplankton and primary production. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford, pp 157–178Google Scholar
  26. Menzies J (ed) (1995) Modern glacial environments. Processes, dynamics and sediments. Butterworth–Heinemann, OxfordGoogle Scholar
  27. Priscu JC, Foreman CM (2009) Lake of Antarctica. In: Likens GE (ed) Encyclopedia of Inland Waters, vol 2. Elsevier, Oxford, pp 555–566CrossRefGoogle Scholar
  28. Priscu JC, Vincent WF, Howard-Williams C (1989) Inorganic nitrogen uptake and regeneration in perennially ice-covered Lakes Fryxell and Vanda, Antarctica. J Plankton Res 11:335–351CrossRefGoogle Scholar
  29. Priscu JC, Ward BB, Downes MT (1993) Water column transformations of nitrogen in Lake Bonney, a perennially ice-covered Antarctic lake. Antarctic J US 26:237–239Google Scholar
  30. Quesada A, Goff L, Karenz D (1998) Effects of natural UV radiation on Antarctic cyanobacterial mats. Proc NIPR Symp Polar Biol 11:98–111Google Scholar
  31. Remias D, Holzinger A, Cornelius L (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312CrossRefGoogle Scholar
  32. Sharp TR, Priscu JC (1990) Ambient nutrient levels and the effects of nutrient enrichment on primary productivity in Lake Bonney. Antarctic J US 25:226–227Google Scholar
  33. Spaulding SA, McKnight DM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541CrossRefGoogle Scholar
  34. Starmach K (1985) Chrysophyceae. Band 1: Chrysophyceae und Haptophyceae. Suesswasserflora Von Mitteleuropa 1. Fischer Verlag, StuttgartGoogle Scholar
  35. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Internat Verein Limnol 9:1–38Google Scholar
  36. Vincent WF (1981) Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanent ice-covered lake. Ecology 62:1215–1224CrossRefGoogle Scholar
  37. Vincent WF, Vincent CL (1982) Factors controlling phytoplankton production in Lake Vanda (77`S). Can J Fish Aquat Sci 39:1602–1609CrossRefGoogle Scholar
  38. Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency to Antarctic ice-covered lakes to solar UV radiation. Limnol Oceanogr 43:618–624CrossRefGoogle Scholar
  39. Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction of the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and rivers: limnology of arctic and Antarctic aquatic ecosystems. Oxford University Press, UKGoogle Scholar
  40. Wand U, Schwarz G, Brüggemann E, Braüer K (1997) Evidence for physical and chemical stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarct Sci 9:43–45CrossRefGoogle Scholar
  41. Winther JG, Elvehøy H, Bøggild CE, Sand K, Liston G (1996) Melting, runoff and the formation of frozen lakes in a mixed snow and blue ice field in Dronning Maud Land, Antarctica. J Glaciol 42:271–278Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorma Keskitalo
    • 1
  • Matti Leppäranta
    • 2
  • Lauri Arvola
    • 1
  1. 1.Lammi Biological StationUniversity of HelsinkiLammiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations