Polar Biology

, Volume 36, Issue 8, pp 1175–1193 | Cite as

New data concerning postembryonic development in Antarctic Ammothea species (Pycnogonida: Ammotheidae)

  • Esperanza Cano SánchezEmail author
  • Pablo J. López-González
Original Paper


In this paper, new data on larval and postlarval stages after newly collected and museum-deposited material of six Ammothea species is provided and compared with previously known information. Different developmental stages attached to the ovigerous legs of adult males for each species were found: four stages [protonymphon (Ptn), postlarval instar 1 (PL-1), postlarval instar 2 (PL-2), and postlarval instar 3 (PL-3)] for A. carolinensis; just one (Ptn) for A. clausi and A. minor; three stages (Ptn, PL-1, PL-2) for A. bicorniculata and A. spinosa; and other three (Ptn, PL-2, PL-3) for A. longispina. In the present contribution, the external morphology of each larval and postlarval instar is described, illustrated, and discussed. The larval and postlarval development of Ammothea bicorniculata, A. carolinensis, A. longispina, and A. spinosa is characterized by (1) the eggs hatch as a protonymphon larva; (2) the larvae and subsequent postlarval stages have yolk reserves and a relatively large size (0.5–0.85 mm in length for the protonymphon); (3) the postlarvae remain on the ovigerous legs of males during several moults; (4) the spinning spine is absent; and (5) the development of walking legs is sequential. The protonymphon larva of A. clausi and A. minor is the only stage on the ovigerous legs of males, and this stage is characterized by: (1) there is no yolk reserve and it has a relatively small size (0.22–0.3 mm in length); (2) the spinning spine is present; and (3) all larval appendages have a relatively large size.


Pycnogonida Ammotheidae Ammothea Postembryonic development Protonymphon 



The authors would like to express their gratitude to Miranda Lowe (British Museum of Natural History) for her extensive search for BANZARE specimens in the collections of the BMNH, especially for the loan of the male of Ammothea spinosa bearing the larvae here described and illustrated. Our thanks are also addressed to the officers and crew and many colleagues for their help on board during the Polarstern ANT XXIII/8 cruises. We take this opportunity to extend our thanks to the cruise leader and steering committee of the cruise, especially Julian Gutt and Enrique Isla (ANT XIII/8), all of whom kindly facilitated the work on board and allowed us to collaborate in this Antarctic programme. We thank the Editor and referees by their useful suggestions and criticisms that substantially improved this work. Support for this work was partially provided by POL2006-06399/CGL (Polarstern ANT XXIII/8 - CLIMANT). Mr. Tony Krupa is thanked for reviewing the English version.


  1. Arnaud F, Bamber R (1987) The biology of Pycnogonida. Adv Mar Biol 24:1–96CrossRefGoogle Scholar
  2. Bain BA (2003a) Postembryonic development in the pycnogonid Austropallene cornigera (Family Callipallenidae). Invertebr Reprod Dev 43:181–192CrossRefGoogle Scholar
  3. Bain BA (2003b) Larval types and a summary of postembryonic development within the pycnogonids. Invertebr Reprod Dev 43:193–222CrossRefGoogle Scholar
  4. Bain BA, Govedich FG (2004) Courtship and mating behavior in the Pycnogonida (Chelicerata: Class Pycnogonida): a summary. Invertebr Reprod Dev 43:63–79CrossRefGoogle Scholar
  5. Bamber RN (2007) A holistic re-interpretation of the phylogeny of the Pycnogonida Latreille, 1810 (Arthropoda). Zootaxa 1668:295–312Google Scholar
  6. Behrens W (1984) Larvenentwicklung und Metamorphose von Pycnogonum litorale (Chelicerata, Pantopoda). Zoomorphology 104:266–279CrossRefGoogle Scholar
  7. Bogomolova EV (2007) Larvae of three sea spider species of the Genus Nymphon (Arthropoda: Pycnogonida) from the White Sea. Russ J Mar Biol 33:145–160CrossRefGoogle Scholar
  8. Bogomolova EV, Malakhov VV (2003) Larvae of sea spiders (Arthropoda, Pycnogonida) of the White Sea. Entomol Rev 83:213–227Google Scholar
  9. Bogomolova EV, Malakhov VV (2004) Fine morphology of sea spider larvae (Arthropoda, Pycnogonida) of the White Sea. Zool Bespozvon 1:3–28Google Scholar
  10. Bogomolova EV, Malakhov VV (2006) Lecithotrophic protonymphon is a special type of postembryonic development of sea spiders (Arthropoda, Pycnogonida). Dokl Biol Sci 409:328–331CrossRefGoogle Scholar
  11. Bouvier EL (1913) Pycnogonides du pourquoi Pas? In: Calman WT (ed) Deuxième Expédition Antarctique française (1908–1910) 6. Masson, Paris, pp 1–169Google Scholar
  12. Brenneis G, Arango CP, Scholtz G (2011) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328PubMedCrossRefGoogle Scholar
  13. Burris ZP (2011) Larval morphologies and potential developmental modes of eight sea spider species (Arthropoda: Pycnogonida) from the southern Oregon coast. J Mar Biol Assoc UK 91:845–855CrossRefGoogle Scholar
  14. Calman WT (1915) Pycnogonida. British Antarctic (Terra Nova) Expedition, 1910. Zool 3:1–74Google Scholar
  15. Cano E, López-González PJ (2009) Novel mode of postembryonic development in Ammothea genus (Pycnogonida: Ammotheidae) from Antarctic waters. Sci Mar 73:541–550CrossRefGoogle Scholar
  16. Cano E, López-González PJ (2010) Postembryonic development of Nymphon unguiculatum Hodgson 1915 (Pycnogonida, Nymphonidae) from the South Shetland Islands (Antarctica). Polar Biol 33:1205–1214CrossRefGoogle Scholar
  17. Child CA (1995) Antarctic and Subantarctic Pycnogonida 1. The Family Ammotheidae. In: Cairns SD (ed) Biology of the Antarctic Seas XXIII. Antarct Res Ser 63:1–48Google Scholar
  18. Dogiel V (1913) Embryologische Studien an Pantopoden. Z Wiss Zool Abt A 107:575–741Google Scholar
  19. Ferrari FD, Fornshell JA, Vagelli AA, Ivanenko VN, Dahms HU (2011) Early postembryonic development of marine chelicerates and crustaceans with a nauplius. Crustaceana 84:869–893CrossRefGoogle Scholar
  20. Fornshell JA, Ferrari FD (2012) Larvae of the pycnogonids Ammothea gigantea Gordon, 1932 and Achelia cuneatis Child, 1999 described from archived specimens. Arthropod 1:121–128Google Scholar
  21. Fry WG, Hedgpeth JW (1969) Pycnogonida, 1. Colossendeidae, Pycnogonidae, Endeidae, Ammotheidae. Fauna of the Ross Sea, 7. Mem N Z Oceanogr Inst 49:1–139Google Scholar
  22. Gillespie JM, Bain BA (2006) Postembryonic development of Tanystylum bealensis (Pycnogonida, Ammotheidae) from Barkley Sound, British Columbia, Canada. J Morphol 267:308–317PubMedCrossRefGoogle Scholar
  23. Gordon I (1932) Pycnogonida. Discov Rep 6:1–138Google Scholar
  24. Gordon I (1944) Pycnogonida. Rep B A N Z Antarct Res Exped 5:1–172Google Scholar
  25. Gutt J (2008) The Expedition ANTARKTIS-XXIII/8 of the Research Vessell “Polarstern” in 2006/2007. Ber Polarforsch Meeresforsch 569:1–153Google Scholar
  26. Hedgpeth JW (1947) On the evolutionary significance of the Pycnogonida. Smithsonian Misc Collect 106:1–54Google Scholar
  27. Hodgson TV (1927) Die Pycnogoniden der Deutschen Südpolar-Expedition 1901–1903. Dtsch Südpolar Exped Ser II Zool 19:303–358Google Scholar
  28. Lou TH (1936) Notes sur Lecythorhynchus hilgendorfi Böhm (Pycnogonida). Contributions from the Institute of Zoology. Natl Acad Peiping 3:133–163Google Scholar
  29. Lovely EC (2005) The life history of Phoxichilidium tubulariae (Pycnogonida; Phoxichilidiidae). Northeast Nat 12:77–92CrossRefGoogle Scholar
  30. Nakamura K (1981) Post-embryonic development of a pycnogonid, Propallene longiceps. J Nat Hist 15:49–62CrossRefGoogle Scholar
  31. Ohshima H (1933) Young pycnogonids found parasitic on nudibranchs. Annot Zool Jap 14:61–66Google Scholar
  32. Okuda S (1940) Metamorphosis of a pycnogonid parasitic in a hydromedusa. J Fac Sci Hokkaido Univ (ser 6 Zool) 7:73–86Google Scholar
  33. Russel DJ, Postscript: Hedgpeth JW (1990) Host utilization during ontogeny by two pycnogonid species (Tanystylum duospinum and Ammothea hilgendorfi) parasitic on the hydroid Eucopella everta (Coelenterata: Campanulariidae). Bijdr Dierkd 60:215–224Google Scholar
  34. Staples DA, Watson JE (1987) Associations between pycnogonids and hydroids. In: Bouillion J (ed) Modern trends in the systematics, ecology and evolution of hydroids and hydromedusa. Oxford University Press, Oxford, pp 215–226Google Scholar
  35. Stiboy-Risch C (1992) Ammothea bicorniculata, eine neue Art der Ammotheidae aus der Antarktis (Pantopoda, Pycnogonida). Bonn Zool Beitr 43:333–338Google Scholar
  36. Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383PubMedCrossRefGoogle Scholar
  37. Wilhelm E, Bückmann D, Tomaschko KH (1997) Life cycle and population dynamics of Pycnogonum litorale (Pycnogonida) in a natural habitat. Mar Biol 129:601–606CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Esperanza Cano Sánchez
    • 1
    Email author
  • Pablo J. López-González
    • 1
  1. 1.Biodiversidad y Ecología de Invertebrados Marinos, Departamento Zoología, Facultad de BiologíaUniversidad de SevillaSevillaSpain

Personalised recommendations