Polar Biology

, Volume 36, Issue 8, pp 1107–1123 | Cite as

A mesoscale study of phytoplankton assemblages around the South Shetland Islands (Antarctica)

  • Cristina García-Muñoz
  • Luis M. Lubián
  • Carlos M. García
  • Ángeles Marrero-Díaz
  • Pablo Sangrà
  • Maria Vernet
Original Paper

Abstract

Phytoplankton assemblages around the South Shetland Islands (SSI) were closely related to mesoscale physical features, based on high spatial resolution sampling performed during the summer of 2010. Sampling was done in 8 transects with stations 9 km apart. Phytoplankton groups were described using flow cytometry, FlowCAM and HPLC/CHEMTAX pigment analysis. Nanophytoplankton (2–20 μm) was predominant throughout the study area, which was dominated by small diatoms. They were distributed along the stratified waters of the SSI shelf and in the centre of the Bransfield Strait where an anticyclonic eddy was detected, established between two frontal structures [Bransfield Front and Peninsula Front (PF)]. The highest concentrations correlated with mid-to-high temperatures (1.07 °C) and mid-salinities (34.03) corresponding with Transitional Bellinghausen Water stations. Haptophytes distribution co-varied with small diatoms but also appeared in those vertical mixed stations with Transitional Zonal Water with Weddell Sea influence. A shift from smaller to larger diatoms was detected at the ice edge in the Antarctic Sound. Cryptophytes were restricted to stratified stations of the SSI shelf and those associated with the PF, while small prasinophytes were the only group occupying deeper and colder waters of the Drake Passage, beneath the Antarctic Surface Water, north of a narrow frontal region described here for the first time (Shetland Front). Phytoplankton assemblages around the SSI were strongly connected with the Bransfield Current System, supporting a clockwise circulation around the archipelago. The Bransfield Current System components are permanent structures during the austral summer suggesting that the distribution of phytoplankton, which responds to these structures, must also be a quasi-permanent feature.

Keywords

South Shetland Islands Phytoplankton Small diatoms Mesoscale Water masses Fronts 

Notes

Acknowledgments

We are grateful to the captain, crew and scientists on board the R.V. Hespérides for their co-operation and logistic support during the cruise. Thanks are also given to Eduardo Ramírez and Wendy Kozlowski for their assistance in analysing plankton samples and CHEMTAX management, respectively. We also thank three anonymous reviewers for their valuable comments on a previous version of this manuscript. This work was supported by the CTM2008-06343-C02-02/ANT project from the Spanish Ministry of Science and Education. C.G-M.’s work was supported by a predoctoral fellowship from the Spanish Council for Scientific Research (CSIC), JAE-Predoc 2009. M.V. was supported by a grant from the US National Science Foundation ANT05-28728.

Supplementary material

300_2013_1333_MOESM1_ESM.doc (60 kb)
Table 1. Supplementary material. HPLC Pigments quantified, average retention time, extinction coefficients applied and application wavelengths used (DOC 59 kb)

References

  1. Alderkamp A-C, De Baar HJW, Visser RJW, Arrigo KR (2010) Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnol Oceanogr 55:1248–1264CrossRefGoogle Scholar
  2. Álvarez E, López-Urrutia A, Nogueira E, Fraga S (2011) How to effectively sample the plankton size spectrum? A case study using FlowCAM. J Plakton Res 33:1119–1133CrossRefGoogle Scholar
  3. Ardelan MV, Holm-Hansen O, Hewes CD, Reiss CS, Silva NS, Dulaiova H, Steinnes E, Sakshaug E (2010) Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences 7:11–25CrossRefGoogle Scholar
  4. Arrigo KR, Alderkamp A-C (2012) Shedding dynamic light on Fe limitation (DynaLiFe). Deep-Sea Res II 71–76:1–4CrossRefGoogle Scholar
  5. Becquevort S (1997) Nanoprotozooplankton in the Atlantic sector of the Southern Ocean during early spring: biomass and feeding activities. Deep-Sea Res II 44:355–373CrossRefGoogle Scholar
  6. Chelton DB, Deszoeke RA, Schlax MG, Naggar K, Stwertz N (1998) Geographical variability of the first baroclinic rossby radius of deformation. J Phys Oceanogr 28:433–460CrossRefGoogle Scholar
  7. Claustre H, Ras J (2009) The LOV Method. In: Hooker SB et al. (eds) The third SeaWiFS PLC analyses round-robin experiment (SeaHARRE-3). Greenbelt, MD, pp 80–85Google Scholar
  8. De Jong J, Schoemann V, Lannuzel D, Croot P, de Baar H, Tison J-L (2012) Natural iron fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic Peninsula. J Geophys Res. doi: 10.1029/2011JG001679 Google Scholar
  9. Detmer AE, Bathmann UV (1997) Distribution patterns of autotrophic pico- and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep-Sea Res II 44:299–320CrossRefGoogle Scholar
  10. Di Tullio GR, Garcia N, Riseman SF, Sedwick PN (2007) Effects of iron concentration on pigment composition in Phaeocystis antarctica grown at low irradiance. Biogeochemistry 83:71–81CrossRefGoogle Scholar
  11. Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941PubMedCrossRefGoogle Scholar
  12. Feng Y, Hare CE, Rose JM et al (2010) Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-Sea Res I 57:368–383CrossRefGoogle Scholar
  13. Fiala M, Kopczynska EE, Jeandel C, Oriol L, Vetion G (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J Plakton Res 20:1341–1356CrossRefGoogle Scholar
  14. García MA, López O, Sospedra J, Espino M, Gracia V, Morrison G, Rojas P, Figa J, Puigdefàbregas JS, Arcilla A (1994) Mesoscale variability in the Bransfield Strait region (Antarctica) during Austral summer. Ann Geophys 12:856–867CrossRefGoogle Scholar
  15. García MA, Castro CG, Ríos AF, Doval MD, Rosón G, Gomis D, López O (2002) Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96. Deep-Sea Res II 49:585–602CrossRefGoogle Scholar
  16. Garibotti I, Vernet M, Kozlowski W, Ferrario ME (2003) Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Mar Ecol Prog Ser 247:27–42CrossRefGoogle Scholar
  17. Garibotti I, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep-Sea Res I 52:1823–1841CrossRefGoogle Scholar
  18. Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45PubMedCrossRefGoogle Scholar
  19. Green RE, Sosik HM, Olson RJ (2003) Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters. Limnol Oceanogr 48:2377–2391CrossRefGoogle Scholar
  20. Grelowski A, Majewicz A, Pastuszak M (1986) Mesoscale hydrodynamic processes in the region of Bransfield Strait and the southern part of Drake Passage during BIOMASS-SIBEX 1983/84. Pol Polar Res 7:353–369Google Scholar
  21. Hernández-León S, Montero I, Almeida C, Portillo-Hahnefeld A, Bruce-Lauli E (2008) Mesozooplankton biomass and indices of grazing and metabolic activity in Antarctic waters. Polar Biol 31:1373–1382CrossRefGoogle Scholar
  22. Hernández-León S, Sangrà P, Lehette P, Lubián L, Almeida C, Putzeys S, Bécognée P, Andrade MP (2013) Zooplankton biomass and metabolism in the frontal zones of the Bransfield Strait, Antarctica. J Marine Syst 111–112:196–207CrossRefGoogle Scholar
  23. Hewes CD (2009) Cell size of Antarctic phytoplankton as biogeochemical condition. Antarctic Sci 21:457–470CrossRefGoogle Scholar
  24. Hewes CD, Holm-Hansen O, Sakshaug E (1985) Alternate carbon pathways at lower trophic levels in the Antarctic food-web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Heidelberg, pp 277–283CrossRefGoogle Scholar
  25. Hewes CD, Reiss CS, Kahru M, Mitchell BG, Holm-Hansen O (2008) Control of phytoplankton biomass by dilution and mixing depth in the western Weddell-Scotia Confluence. Mar Ecol Prog Ser 366:15–29CrossRefGoogle Scholar
  26. Hewes CD, Reiss CS, Holm-Hansen O (2009) A quantitative analysis of sources for summertime phytoplankton variability over 18 years in the South Shetland Islands (Antarctica). Deep-Sea Res I 56:1230–1241CrossRefGoogle Scholar
  27. Holm-Hansen O, Hewes CD (2004) Deep Chlorophyll-a maxima (DCMs) in Antarctic waters: I. Relationships between DCMs and the physical, chemical, and optical conditions in the upper water column. Polar Biol 27:699–710CrossRefGoogle Scholar
  28. Holm-Hansen O, Hewes CD, Villafañe VE, Helbling EW, Silva N, Amos A (1997) Phytoplankton biomass and distribution in relation to water masses around Elephant Island, Antarctica. Polar Biol 18:145–153CrossRefGoogle Scholar
  29. Holm-Hansen O, Kahru M, Hewes CD (2005) Deep chlorophyll a maxima (DCMs) in pelagic Antarctic waters. II. Relation to bathymetric features and dissolved iron concentrations. Mar Ecol Prog Ser 297:71–81CrossRefGoogle Scholar
  30. Ishikawa A, Wright SW, van den Enden RL, Davidson AT, Marchant HJ (2002) Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999/2000. Polar Biosci 15:11–26Google Scholar
  31. Jeffrey SW, Wright SW, Zapata M (1999) Recent advances in HPLC pigment analysis of phytoplankton. Mar Freshw Res 50:879–896CrossRefGoogle Scholar
  32. Kang SH, Lee SH (1995) Antarctic phytoplankton assemblage in the western Bransfield-Strait region, February 1993: composition, biomass, and mesoscale distributions. Mar Ecol Prog Ser 129:253–267CrossRefGoogle Scholar
  33. Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821CrossRefGoogle Scholar
  34. Klunder MB, Laan P, Middag R, De Baar HJW, van Ooijen JC (2011) Dissolved iron in the Southern Ocean (Atlantic sector). Deep-Sea Res II 58:2678–2694CrossRefGoogle Scholar
  35. Kozlowski W, Deutschman D, Garibotti I, Trees C, Vernet M (2011) An evaluation of the application of CHEMTAX to Antarctic coastal pigment data. Deep-Sea Res I 58:350–364CrossRefGoogle Scholar
  36. Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21CrossRefGoogle Scholar
  37. Lubián LM, Rodríguez-Gálvez S, Lama CM, García CM, Corzo A, Gordo C, Sangrà P (2006) Fitoplancton del Estrecho de Bransfield: Abundancia, distribución y acoplamiento físico-biológico durante el verano de 2002–2003. Resúmenes del VII Simposio de estudios polares españoles (Granada), pp 185–187Google Scholar
  38. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  39. Marchant HJ, Thomsen HA (1994) Haptophytes in polar waters. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Clarendon Press, Oxford, pp 209–228Google Scholar
  40. Marchant HJ, Buck KR, Garrison DL, Thomsen HA (1989) Mantoniella in Antarctic waters including the description of M. antarctica sp. nov. (Prasinophyceae). J Phycol 25:167–174CrossRefGoogle Scholar
  41. McManus MA, Woodson CB (2012) Plankton distribution and ocean dispersal. J Exp Biol 215:1008–1016PubMedCrossRefGoogle Scholar
  42. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  43. Menden-Deuer S, Lessard EJ, Satterberg J (2001) Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar Ecol Prog Ser 222:41–50CrossRefGoogle Scholar
  44. Mendes CRB, de Souza MS, Tavano VM, Costa M, Brotas V, Eiras CA (2012a) Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep-Sea Res I 65:1–14CrossRefGoogle Scholar
  45. Mendes CRB, Tavano VM, Leal MC, de Souza MS, Brotas V (2012b) Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol. doi: 10.1007/s00300-012-1282-4 Google Scholar
  46. Mills MM, Kropuenske LR, VanDijken GL, Alderkamp A-C, Berg GM, Robinson DH, Welschmeyer NA, Arrigo KR (2010) Photophysiology in two Southern Ocean phytoplankton taxa: photosynthesis of Phaeocystis antarctica (Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under simulated mixed-layer irradiance. J Phycol 46:1114–1127CrossRefGoogle Scholar
  47. Montes-Hugo MA, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn S, Schofields O (2009) Recent changes in phytoplankton communities associated with rapid pregional climate change along the Western Antarctic Peninsula. Science 323:1470–1473PubMedCrossRefGoogle Scholar
  48. Niiler P, Amos A, Hu JH (1991) Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region. Deep-Sea Res II 38:943–959CrossRefGoogle Scholar
  49. Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214:1–70Google Scholar
  50. Rodriguez F, Varela M, Zapata M (2002) Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep-Sea Res II 49:723–747CrossRefGoogle Scholar
  51. Sangrà P, Gordo C, Hernádez-Arencibia M, Marrero-Díaz A, Rodríguez-Santana A, Stegner A, Martínez-Marrero A, Pelegrí JL, Pichon T (2011) The Bransfield current system. Deep-Sea Res I(58):390–402Google Scholar
  52. Schlüter L, Mohlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar Ecol Prog Ser 192:49–63CrossRefGoogle Scholar
  53. Schlüter L, Lauridsen T, Krogh G, Jorgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios-a comparison between pigment analysis by HPLC and microscopy. Freshw Biol 51:1474–1485CrossRefGoogle Scholar
  54. Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study, CanberraGoogle Scholar
  55. Selph KE, Apprill A, Measures CI, Hatta M, Hiscock WT, Brown MT (2013) Phytoplankton distributions in the Shackleton Fracture Zone/Elephant Island region of the Drake Passage in February-March 2004. Deep-Sea Res II. doi: 10.1016/j.dsr2.2013.01.030
  56. Shields AR, Smith WO (2009) Size-fractionated photosynthesis/irradiance relationship during Phaeocystis antarctica-dominated blooms in the Ross Sea, Antarctica. J Plankton Res 31:701–712CrossRefGoogle Scholar
  57. Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296CrossRefGoogle Scholar
  58. Sievers HA, Nowlin WD Jr (1984) The stratification a water masses at the Drake Passage. J Geophys Res 89:10489–10514CrossRefGoogle Scholar
  59. Smetacek V, Scharek R, Nöthig EM (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry KR, Hempel G (eds) Antarctic Ecosystems: Ecological Change and Conservation. Springer, Berlin, pp 103–114CrossRefGoogle Scholar
  60. Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Sci 16:541–558CrossRefGoogle Scholar
  61. Smith RC, Martinson DG, Stammerjohn SE, Iannuzzi R, Ireson K (2008) Bellingshausen and western Antarctic Peninsula region: pigment biomass and sea-ice spatial/temporal distribution and interannual variability. Deep-Sea Res II 55:1949–1963CrossRefGoogle Scholar
  62. Sosik HM, Olson RJ (2002) Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep-Sea Res I 49:1195–1216CrossRefGoogle Scholar
  63. Sosik HM, Olson RJ, Armbrust EV (2010) Flow cytometry in phytoplankton research. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer, Netherlands, pp 171–185CrossRefGoogle Scholar
  64. Stauber JL, Jeffrey SW (1988) Photosynthetic pigments in fifty-one species of marine diatoms. J Phycol 24:158–172Google Scholar
  65. Stefels J, Van Leeuwe MA (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J Phycol 34:486–495CrossRefGoogle Scholar
  66. Teira E, Mouriño-Carballido B, Martínez-García S, Sobrino C, Ameneiro J, Hernández-León S, Vázquez E (2012) Controls of primary production and bacterial carbon metabolism around South Shetland Islands. Deep-Sea Res I 69:70–81CrossRefGoogle Scholar
  67. Tokarczyk R (1987) Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multidimensional analysis. Pol Polar Res 8:333–336Google Scholar
  68. UNESCO (1994) Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, vol 29. IOC Manuals and Guides, UNESCO, Paris, pp 97–100Google Scholar
  69. Varela M, Fernández E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep-Sea Res II 49:749–768CrossRefGoogle Scholar
  70. Vázquez E, Ameneiro J, Putzeys S, Gordo C, Sangrà P (2007) Distribution of meroplankton communities in the Bransfield Strait, Antarctica. Mar Ecol Prog Ser 338:119–129CrossRefGoogle Scholar
  71. Vernet M, Martinson D, Ianuzzi R, Stammerjohn S, Kozlowski W, Sines K, Smith R, Garibotti I (2008) Primary production within the sea-ice zone west of the Antarctic Peninsula: I-Sea ice, summer mixed layer, and irradiance. Deep-Sea Res II 55:2068–2085CrossRefGoogle Scholar
  72. Villafañe V, Helbling W, Holm-Hansen O (1991) AMLR program: size distribution and species composition of the phytoplankton crop around Elephant Island. Antarct J US 26:201–202Google Scholar
  73. Waite AM, Safi KA, Hall JA, Nodder SD (2000) Mass sedimentation of picoplankton embedded in organic aggregates. Limnol Oceanogr 45:87–97CrossRefGoogle Scholar
  74. Wright SW, Jeffrey SW (2006) Pigment markers for phytoplankton production. In: Volkman JK (ed) Marine organic matter: biomarkers, Isotopes and DNA. Springer, Berlin, pp 71–104CrossRefGoogle Scholar
  75. Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363–2400CrossRefGoogle Scholar
  76. Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, Nash GV (2009) Composition and significance of picoplankton in Antarctic waters. Polar Biol 32:797–808CrossRefGoogle Scholar
  77. Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80 ºE) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 57:758–778CrossRefGoogle Scholar
  78. Zapata M, Garrido JL (1991) Influence of injection conditions in reversed phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 31:589–594CrossRefGoogle Scholar
  79. Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar
  80. Zapata M, Jeffrey SW, Wright SW, Rodriguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102CrossRefGoogle Scholar
  81. Zhou M, Niller PP, Zhu Y, Dorland RD (2006) The western boundary current in the Bransfield Strait, Antarctica. Deep-Sea Res I 53:1244–1252CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristina García-Muñoz
    • 1
  • Luis M. Lubián
    • 1
  • Carlos M. García
    • 2
  • Ángeles Marrero-Díaz
    • 3
  • Pablo Sangrà
    • 3
  • Maria Vernet
    • 4
  1. 1.Departamento de Ecología y Gestión CosteraInstituto de Ciencias Marinas de Andalucía (ICMAN-CSIC)Puerto RealSpain
  2. 2.Departamento de Biología, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain
  3. 3.Departamento de Física, Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  4. 4.Integrative Oceanographic Division, Scripps Institution of Oceanography, MC 0218University of California San DiegoLa JollaUSA

Personalised recommendations