Polar Biology

, Volume 36, Issue 6, pp 895–906 | Cite as

Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula

  • Julian Gutt
  • Mattias Cape
  • Werner Dimmler
  • Laura Fillinger
  • Enrique Isla
  • Verena Lieb
  • Tomas Lundälv
  • Christian Pulcher
Original Paper


The aim of this study was to contribute to a general understanding of the response of the Antarctic macrobenthos to environmental variability and climate-induced changes. The change in population size of selected macrobenthic organisms was investigated in the Larsen A area east of the Antarctic Peninsula in 2007 and 2011 using ROV-based imaging methods. The results were complemented by data from the Larsen B collected in 2007 to allow a conceptual reconstruction of the environment-driven changes before the period of investigation. Both Larsen areas are characterised by ice-shelf disintegration in 1995 and 2002, respectively, as well as high inter-annual variability in sea-ice cover and oceanographic conditions. In 2007 one ascidian species, Molgula pedunculata, was abundant north and south of the stripe of remaining ice shelf between Larsen A and B. Population densities decreased drastically in the Larsen A between 2007 and 2011, coincident with the decrease in Corella eumyota, another ascidian. Among the ophiuroids, the population of deposit feeders increased, while suspension feeders halved their abundance. Current measurements indicated a northward flow between the Larsen B and Larsen A, suggesting that a major physical forcing on benthic population development comes from the South. The results demonstrate that Antarctic macrobenthic populations can exhibit dramatic population dynamics. Analyses of sea-ice dynamics, salinity, temperature and surprisingly ice-shelf disintegration history, however, did not provide any clear evidence for environmental drivers underlying the apparent changes.


Ascidians Ophiuroids Population growth Population collapse Climate change Interannual sea-ice dynamics Current regime 



Thanks are due to those who made a repetitive study in such an area of very difficult accessibility possible, referees, science managers, the crew of “Polarstern” and to the experts that helped with the identification of taxa (s.l.), A. Boetius, M. Taitán, R. Sahade and C. Sands. M. Cape was funded by the US National Science Foundation (NSF) grant ANT-0732983, the US National Aeronautics and Space Administration (NASA) award 12-EARTH12F-0091 and a US NSF Graduate Research Fellowship.


  1. Arnaud PM, López CM, Olaso I, Ramil F, Ramos-Esplá RA (1998) Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biol 19:160–166CrossRefGoogle Scholar
  2. Arrigo KR, van Dijken GL, Ainley DG, Fahnstock MA, Markus T (2002) Ecological impact of a large Antarctic iceberg. Geophys Res Lett 29(7). doi: 10.1029/2001GL014160
  3. Barnes DKA, Conlan K (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38PubMedCrossRefGoogle Scholar
  4. Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Chang 1:365–368CrossRefGoogle Scholar
  5. Bertolin ML, Schloss IR (2009) Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica. Polar Biol 32:1435–1446CrossRefGoogle Scholar
  6. Dahm C (1999) Ophiuroids (Echinodermata) of southern Chile and the Antarctic: taxonomy, biomass, diet and growth of dominant species. Sci Mar 63:427–432CrossRefGoogle Scholar
  7. Dayton PK (1979) Observations of growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. Colloques internationaux du C.N.R.S. Biologie des Spongiaires 291:271–282Google Scholar
  8. Dayton PK (1989) Interdecadal recruitment and destruction of an Antarctic sponge population and its effect on local populations of Asteroids. Science 245:1484–1486PubMedCrossRefGoogle Scholar
  9. Dayton PK (1990) Polar Benthos. In: Smith WO (ed) Polar oceanography, part B: chemistry, biology, and geology. Academic Press, London, pp 631–685CrossRefGoogle Scholar
  10. Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robillard G, Barry J, Thurber AR, Conlan K (2013) Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8(2):e56939. doi: 10.1371/journal.pone.0056939
  11. Fell HB, Holzinger T, Sherraden M (1969) Ophiuroides. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series. American Geographical Society Folio, vol 11, pp 42–43Google Scholar
  12. Fillinger L, Funke T (2012) A new 3-D-modelling method to extract subtransect dimensions from underwater videos. Ocean Sci Discuss 9:1–39. doi: 10.5194/osd-9-3879 CrossRefGoogle Scholar
  13. Gallardo VA (1987) The sublittoral macrofaunal benthos of the Antarctic Shelf. Environ Int 13:71–81CrossRefGoogle Scholar
  14. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  15. Gutt J (2008) The Expedition ANTARKTIS-XXIII/8 of the Research Vessel “Polarstern” in 2006/2007. Ber Polarforsch Meeresforsch 569:1–152Google Scholar
  16. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser 253:77–83CrossRefGoogle Scholar
  17. Gutt J, Schickan T (1998) Epibiotic relationships on the Antarctic benthos. Antarct Sci 10:398–405CrossRefGoogle Scholar
  18. Gutt J, Starmans A (2001) Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol 24:615–619Google Scholar
  19. Gutt J, Starmans A (2003) Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biol 26:276–278Google Scholar
  20. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res II 58:74–83CrossRefGoogle Scholar
  21. Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M (compilers) (2005, updated 2006) MODIS mosaic of Antarctica (MOA) image map. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. Accessed 1 January 2013
  22. Knust R, Gerdes D, Mintenbeck K (2012) The Expedition of the Research Vessel “Polarstern” to the Antarctic in 2011 (ANT-XXVII/3) (CAMBIO). Ber Polarforsch Meeresforsch 644:1–200Google Scholar
  23. Koplowitz G, McClintock JB, Amsler C, Baker BJ (2009) Palatability and chemical anti-predatory defences in common ascidians from Antarctic Peninsula. Aquatic Biol 7:81–92CrossRefGoogle Scholar
  24. Kott P (1969) Ascidiacea. In: Bushnell VC, Hedgpeth JW (eds) Antarctic map folio series. American Geographical Society Folio, vol 11, pp 43–44Google Scholar
  25. Lambert G, Lambert CC (1987) Spicule formation in the solitary ascidian, Herdmania momus. J Morphol 192:145–159CrossRefGoogle Scholar
  26. López-Legentil S, Turon X, Schupp P (2006) Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J Exp Mar Biol Ecol 332:27–36CrossRefGoogle Scholar
  27. Manjon-Cabeza ME, Ramos A (2003) Ophiuroid community structure of the South Shetland Islands and Antarctic Peninsula region. Polar Biol 26:691–699CrossRefGoogle Scholar
  28. Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim 19(20):5388–5404CrossRefGoogle Scholar
  29. McClintock JB, Baker BJ, Hamann MT, Yoshida W, Slattery M, Heine JN, Bryan PJ, Jayatilake GS, Moon BH (1994) Homarine as a feeding deterrent in common shallow-water antarctic lamellarian gastropod Marseniopsis mollis: a rare example of chemical defense in a marine prosobranch. J Chem Ecol 20(10):2539–2549PubMedCrossRefGoogle Scholar
  30. Monniot C, Monniot F (1983) Ascidies Antarctiques et Subantarctiques: morphologie et Biogeographie. Mem Mus Natl Hist Nat Ser A Zool 125:1–135Google Scholar
  31. Piepenburg D, Schmid MK, Gerdes D (2002) The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitude biomass cline in the Southern Ocean. Polar Biol 25:146–158Google Scholar
  32. Sahade R, Tatián M, Kowalke J, Kühne S, Esnal GB (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol 19:85–91CrossRefGoogle Scholar
  33. Sanamyan K (2012) Molgula pedunculata Herdman, 1881. In: Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira Da Rocha R, Swalla BJ, Turron X (eds) Ascidiacea World Database. Accessed 31 December 2012
  34. Sañé E, Isla E, Grémare A, Gutt J, Vétion G, DeMaster DJ (2011) Pigments in sediments beneath recently collapsed ice shelves: the case of Larsen A and B shelves, Antarctic Peninsula. J Sea Res 65:94–102CrossRefGoogle Scholar
  35. Scambos T, Bohlander J, Raup B (1996) Images of Antarctic ice shelves. Boulder, Colorado, USA: National Snow and Ice Data Center. Digital media. Accessed 31 December 2012
  36. Skvarca P, De Angelis H (2003) Impact assessment of regional climatic warming on glaciers and ice shelves of the northeastern Antarctic Peninsula. Antarct Res Ser 79:69–78CrossRefGoogle Scholar
  37. Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2012) A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proc R Soc B 279:1017–1026PubMedCrossRefGoogle Scholar
  38. Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res 113:C02S03. doi: 10.1029/2005JC003384 CrossRefGoogle Scholar
  39. Sumida PYG, Bernadino AF, Stedall VP, Glover AG, Smith CR (2008) Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: results from video surveys. Deep-Sea Res II 55:2465–2477CrossRefGoogle Scholar
  40. Torre L, Servetto N, Eöry ML, Momo F, Tatián M, Abele D, Sahade R (2012) Respiratory responses of three Antarctic ascidians and a sea pen to increase sediment concentrations. Polar Biol 35:1743–1748CrossRefGoogle Scholar
  41. Turner J, Marshall GJ (2011) Climate change in the Polar Regions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic climate change and the environment. SCAR, Scott Polar Research Institute, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julian Gutt
    • 1
  • Mattias Cape
    • 2
  • Werner Dimmler
    • 3
  • Laura Fillinger
    • 1
  • Enrique Isla
    • 4
  • Verena Lieb
    • 1
    • 5
  • Tomas Lundälv
    • 6
  • Christian Pulcher
    • 1
    • 7
  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaLa Jolla, San DiegoUSA
  3. 3.Fielax Gesellschaft für wissenschaftliche Datenverarbeitung mbHBremerhavenGermany
  4. 4.Institut de Ciències del Mar-CSICPasseig Marítim de la BarcelonetaBarcelonaSpain
  5. 5.Christian-Albrechts-Universität KielKielGermany
  6. 6.Sven Lovén Centre for Marine SciencesUniversity of GothenburgStrömstadSweden
  7. 7.Institut für Biologie und UmweltwissenschaftenCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations