Polar Biology

, Volume 36, Issue 3, pp 373–380

Archaeal diversity from hydrothermal systems of Deception Island, Antarctica

  • Maximiliano J. Amenábar
  • Patricio A. Flores
  • Benoit Pugin
  • Freddy A. Boehmwald
  • Jenny M. Blamey
Original Paper

Abstract

Antarctica is an extreme continent composed of cold environments but also of several geothermal sites, among them is Deception Island, an active stratovolcano located in the South Shetland archipelago. From this island, few microbiological studies have been performed, and the presence of archaea has not been reported. In order to investigate the archaeal diversity in hydrothermalism from Deception Island, different submarine samples were taken from the flooded caldera. Samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene in conjunction with culture-dependent methods at hyperthermophilic temperatures. Analysis from DGGE band sequencing showed the presence of archaea belonging to the hyperthermophilic genus Thermococcus and different uncultured archaea closely related to environmental clones from hydrothermal vents. Archaea from the psychrotolerant genus Methanococcoides were also detected. Additionally, we have successfully isolated an anaerobic hyperthermophilic archaeon closely related to Thermococcuscelericrescens. Cells were irregular cocci with a diameter between 0.6 and 2 μm and grew at 50–90 °C and at a NaCl concentration of 1–5 %. Here, we present, based on culture-dependent and culture-independent approaches, the first report on archaea from marine hydrothermal sites of Antarctica.

Keywords

Hyperthermophilic archaea Thermococcales DGGE Submarine hydrothermalism 

References

  1. Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan J, Logan NA (2005) Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 55:1039–1050PubMedCrossRefGoogle Scholar
  2. Amann R, Ludwig IW, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  3. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613PubMedCrossRefGoogle Scholar
  4. Barry JP, Greene HG, Orange DL, Baxter CH, Robinson BH, Kochevar RE, Nybakken JW, Reed DL, Mchugh CM (1996) Biologic and geologic characteristics of cold seeps in Monterrey Bay, California. Deep Sea Res 43:1739–1762CrossRefGoogle Scholar
  5. Bonch-Osmolovskaya EA, Stetter KO (1991) Interspecies hydrogen transfer in cocultures of thermophilic archaea. Syst Appl Microbiol 14:205–208CrossRefGoogle Scholar
  6. Burggraf S, Fricke H, Neuner A, Kristjansson JK, Rouvier P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269PubMedCrossRefGoogle Scholar
  7. Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799PubMedCrossRefGoogle Scholar
  8. Casamayor EO, Schafer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508PubMedCrossRefGoogle Scholar
  9. Casamayor EO, Muyzer G, Pedrós-Alió C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturating gradient gel electrophoresis and sequencing. Aquat Microb Ecol 25:237–246CrossRefGoogle Scholar
  10. Caselli A, Dos Santos Afonso M, Agusto MR (2004) Gases fumarólicos de la Isla Decepción (Shetland del Sur, Antártida): variaciones químicas y depósitos vinculados a la crisis sísmica de 1999. Rev Asoc Geol Argent 59:291–302Google Scholar
  11. Christner B, Mosley-Thompson E, Thompson L, Reeve JN (2001) Isolation of bacteria and 16SrDNA from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  12. Franzmann PD, Springer N, Ludwig W, De Macario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581CrossRefGoogle Scholar
  13. Gray SC, Sturz A, Bruns MD, Marzan RL, Dougherty D, Law HB, Brackett JE, Marcou M (2003) Composition and distribution of sediments and benthic foraminifera in a submerged caldera after 30 years of volcanic quiescence. Deep Sea Res II 50:1727–1751CrossRefGoogle Scholar
  14. Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment-evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463CrossRefGoogle Scholar
  15. Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594PubMedCrossRefGoogle Scholar
  16. Hudson JA, Daniel RM (1988) Enumeration of thermophilic heterotrophs in geothermally heated soils from Mount Erebus, Ross Island, Antarctica. Appl Environ Microbiol 54:622–624PubMedGoogle Scholar
  17. Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M, Marumo K et al (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514PubMedCrossRefGoogle Scholar
  18. Kuwabara T, Minaba M, Ogi N, Kamekura M (2007) Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:437–443PubMedCrossRefGoogle Scholar
  19. Lavire C, Normand P, Alekhina I, Bulat S, Prieur D, Birrien J-L et al (2006) Presence of Hydrogenophilus thermoluteolus DNA in accretion ice in the subglacial Lake Vostok, Antarctica, assessed using rrs, cbb and hox. Environ Microbiol 8:2106–2114PubMedCrossRefGoogle Scholar
  20. LLarch A, Logan NA, Castellví J, Prieto MJ, Guinea J (1997) Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island, South Shetland Archipelago. Microb Ecol 34:58–65PubMedCrossRefGoogle Scholar
  21. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M et al (2000) Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753PubMedGoogle Scholar
  22. Martin W, Baross J, Kelley D, Russel M (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814PubMedGoogle Scholar
  23. Maugeri TL, Lentini V, Gugliandolo C, Italiano F, Cousin S, Stackebrandt E (2009) Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles 13:199–212PubMedCrossRefGoogle Scholar
  24. Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10:85–96PubMedCrossRefGoogle Scholar
  25. Moussard H, Moreira D, Cambon-Bonavita M, Lopez-Garcia P, Jeanthon C (2006) Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote. FEMS Microbiol Ecol 57:452–469PubMedCrossRefGoogle Scholar
  26. Muñoz PA, Flores PA, Boehmwald FA, Blamey JM (2011) Thermophilic bacteria present in a sample from Fumarole Bay, Deception Island. Antarct Sci 23:549–555CrossRefGoogle Scholar
  27. Muñoz-Martín A, Catalán M, Martín-Dávila J, Carbó A (2005) Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modeling. Antarct Sci 17:213–224CrossRefGoogle Scholar
  28. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular Microbial Ecology Manual. Kluwer, Dordrecht, pp 1–27Google Scholar
  29. Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). Environ Microbiol 5:492–502PubMedCrossRefGoogle Scholar
  30. Nercessian O, Prokofeva M, Lebedinski A, L’haridon S, Cary C, Prieur D, Jeanthon C (2004) Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high-temperature environments. Environ Microbiol 6:170–182PubMedCrossRefGoogle Scholar
  31. Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005) Diversity of bacteria and archaea associated with a carbonate-rich metalliferous sediment sample from the rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714PubMedCrossRefGoogle Scholar
  32. Nicolaus B, Improta R, Manca M, Lama L, Esposito E, Gambacorta A (1998) Alicyclobacilli from an unexplored geothermal soil in Antarctica, Mount Rittmann. Polar Biol 19:133–141CrossRefGoogle Scholar
  33. Nicolaus B, Lama L, Esposito E, Belliti MR, Improta R, Panico A, Gambacorta A (2000) Extremophiles in Antarctica. Ital J Zool 1:169–174CrossRefGoogle Scholar
  34. Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T et al (2010) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Appl Environ Microbiol 76:1198–1211PubMedCrossRefGoogle Scholar
  35. Osburn MR, Amend JP (2011) Thermogladius shockii gen. nov., sp. nov., a hyperthermophilic crenarchaeote from Yellowstone National Park, USA. Arch Microbiol 193:45–52PubMedCrossRefGoogle Scholar
  36. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105:7052–7057PubMedCrossRefGoogle Scholar
  37. Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, De Appolonia F et al (2006) Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307PubMedCrossRefGoogle Scholar
  38. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedGoogle Scholar
  39. Reysenbach AL, Cady S (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86PubMedCrossRefGoogle Scholar
  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  41. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp nov., a novel aerobic hyperthermofilic archeon growing al temperatures up to 100 °C. Int J Syst Evol Microbiol 46:1070–1077Google Scholar
  42. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248Google Scholar
  43. Takai K, Nealson KH, Horikoshi K (2004) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100PubMedCrossRefGoogle Scholar
  44. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035PubMedCrossRefGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  46. Zillig W, Reysenbach A-L (2001) Class IV. Thermococci class. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 342–346Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maximiliano J. Amenábar
    • 1
  • Patricio A. Flores
    • 1
    • 2
  • Benoit Pugin
    • 1
    • 2
  • Freddy A. Boehmwald
    • 1
  • Jenny M. Blamey
    • 1
    • 2
  1. 1.Fundación Científica y Cultural BiocienciaSantiagoChile
  2. 2.Universidad de Santiago de ChileSantiagoChile

Personalised recommendations