Polar Biology

, Volume 36, Issue 3, pp 321–333 | Cite as

Biogeographical and phylogeographical relationships of the bathyal ophiuroid fauna of the Macquarie Ridge, Southern Ocean

  • Timothy D. O’Hara
  • Peter J. Smith
  • V. Sadie Mills
  • Igor Smirnov
  • Dirk Steinke
Original Paper

Abstract

There are relatively few studies examining the latitudinal distribution of polar, subantarctic and temperate faunas on the bathyal seafloor across the Southern Ocean. Here, we investigate the relationship between the subantarctic Macquarie Ridge and adjacent regions of Antarctica (including the Ross Sea) and temperate Australia and New Zealand at depths of 200–2,500 m. We study the fauna at two levels of classification (1) morpho-species (MSPs) accepted by taxonomists and (2) evolutionary significant units defined as reciprocally monophyletic clades derived from phylogenies of mitochondrial DNA. The ophiuroid fauna on the Macquarie Ridge has a predominantly temperate origin, with far more MSPs shared with south-eastern Australia (78 % of species) and southern New Zealand (83 %) than neighbouring Antarctic regions (33 %). However, this asymmetry also reflects the relative species richness of these regions. Many species that are shared between Antarctica and the Macquarie Ridge have diverged into distinct mtDNA lineages indicative of a recent barrier to gene flow.

Keywords

Subantarctic Ophiuroidea COI Biogeography Phylogeography 

Supplementary material

300_2012_1261_MOESM1_ESM.pdf (699 kb)
Supplementary material 1 (PDF 699 kb)

References

  1. Álvarez M, Monaco CL, Tanhua T, Yool A, Oschlies A, Bullister JL, Goyet C, Metzl N, Touratier F, McDonagh E, Bryden HL (2009) Estimating the storage of anthropogenic carbon in the subtropical Indian Ocean: a comparison of five different approaches. Biogeosciences 6:681–703CrossRefGoogle Scholar
  2. Anderson JB, Brake CF, Myers NC (1984) Sedimentation on the Ross Sea continental shelf, Antarctica. Mar Geol 57:295–333CrossRefGoogle Scholar
  3. Balloux F (2010) The worm in the fruit of the mitochondrial DNA tree. Heredity 104:419–420PubMedCrossRefGoogle Scholar
  4. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Boissin E, Féral J-P, Chenuil A (2008) Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea). Mol Ecol 17:1732–1744PubMedCrossRefGoogle Scholar
  6. Bowden DA, Schiaparelli S, Clark MR, Rickard GJ (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep Sea Res Pt II 58:119–127CrossRefGoogle Scholar
  7. Butler A, Williams A, Koslow A, Gowlett-Holmes K, Barker B, Lewis M, Reid R (2000) A study of the conservation significance of the benthic fauna around Macquarie Island and the potential impact of the Patagonian Toothfish trawl fishery. Final Report to Environment Australia Marine Group. CSIRO Marine Research, HobartGoogle Scholar
  8. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M, Stocks KI, Rogers AD, O’Hara TD, White M, Shank TM, Hall-Spencer JM (2010) The ecology of seamounts: structure, function, and human impacts. Ann Rev Mar Sci 2:253–278PubMedCrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Natural Environment Research Council and Plymouth Marine Laboratory, PlymouthGoogle Scholar
  10. Dunn JR, Ridgway KR (2002) Mapping ocean properties in regions of complex topography. Deep Sea Res Pt 1(49):591–604CrossRefGoogle Scholar
  11. Fell HB (1958) Deep-sea echinoderms of New Zealand. Zool Pub Vict Univ Wellingt 24:1–40Google Scholar
  12. Fell HB (1960) Archibenthal and littoral echinoderms of the Chatham Islands: biological results of the Chatham Islands 1954 Expedition. Bull N Z Dept Sci Ind Res 139:55–74Google Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 5:294–299Google Scholar
  14. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedGoogle Scholar
  15. Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. PNAS 106:3249–3253PubMedCrossRefGoogle Scholar
  16. Gaina C, Muller RD, Brown B, Ishihara T, Ivanov S (2007) Breakup and early seafloor spreading between India and Antarctica. Geophys J Int 70:151–169CrossRefGoogle Scholar
  17. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum–a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896CrossRefGoogle Scholar
  18. Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177CrossRefGoogle Scholar
  19. Hart MW, Byrne M, Johnson SL (2003) Cryptic species and modes of development in Patiriella pseudoexigua. J Mar Biol Assoc UK 83:1109–1116CrossRefGoogle Scholar
  20. Hemery LG, Eléaume M, Roussel V, Améziane N, Gallut C, Steinke D, Cruaud C, Couloux A, Wilson NG (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21:2502–2518PubMedCrossRefGoogle Scholar
  21. Hoareau TB, Boissin E (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Res 10:960–967CrossRefGoogle Scholar
  22. Hosie G, Koubbi P, Riddle M, Ozouf-Costaz C, Moteki M, Fukuchi M, Ameziane N, Ishimaru T, Goffart A (2011) CEAMARC, the collaborative East Antarctic marine census for the census of Antarctic marine life (IPY # 53): an overview. Pol Sci 5:75–87CrossRefGoogle Scholar
  23. Hunter RL, Halanych KM (2008) Evaluating connectivity in the Brooding Brittle Star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148PubMedCrossRefGoogle Scholar
  24. Ivanova NV, Fazekas AJ, Hebert PDN (2008) Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol Biol Rep 26:186–198CrossRefGoogle Scholar
  25. Martín-Ledo R, Sands CJ, Lopez-Gonzalez PJ (2012) A new brooding species of brittle star (Echinodermata: Ophiuroidea) from Antarctic waters. Pol Biol. doi:10.1007/s00300-012-1242-z Google Scholar
  26. McClain CR, Hardy SM (2010) The dynamics of biogeographic ranges in the deep sea. Proc R Soc Lond B 1700:3533–3546CrossRefGoogle Scholar
  27. McKnight DG (1967) Additions to the echinoderm fauna of the Chatham Rise. N Z J Mar Freshw Res 1:291–313CrossRefGoogle Scholar
  28. McKnight DG (1984) Echinoderms from Macquarie Island and the Macquarie Ridge. Rec N Z Oceanogr Inst 4:139–147Google Scholar
  29. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. TREE 9:373–375PubMedGoogle Scholar
  30. Mortensen T (1936) Echinoidea and Ophiuroidea. Discov Rep 12:199–348Google Scholar
  31. Muths D, Davoult D, Gentil F, Jollivet D (2006) Incomplete cryptic speciation between intertidal and subtidal morphs of Acrocnida brachiata (Echinoderm: Ophiuroidea) in the North East Atlantic. Mol Ecol 15:3303–3318PubMedCrossRefGoogle Scholar
  32. Nylander J (2008) MrModeltest v.2.3. Department of Systematic Zoology, Uppsala University, SwedenGoogle Scholar
  33. O’Hara TD (1998a) Origin of Macquarie Island echinoderms. Pol Biol 20:143–151CrossRefGoogle Scholar
  34. O’Hara TD (1998b) Systematics and biology of Macquarie Island echinoderms. Mem Mus Vic 57:167–223Google Scholar
  35. O’Hara TD, Stöhr S (2006) Deep water Ophiuroidea (Echinodermata) of New Caledonia: Ophiacanthidae and Hemieuryalidae. Mém Mus nat Hist nat 193:33–141Google Scholar
  36. O’Hara TD, Byrne M, Cisternas P (2004) The Ophiocoma erinaceus complex: another case of cryptic speciation in echinoderms. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München: proceedings of the eleventh international Echinoderm conference, Munich, Germany, 6–10 October 2003. Leiden, Balkema, pp 537–542Google Scholar
  37. O’Hara TD, Rowden AA, Bax NJ (2011) A southern hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21:226–230PubMedCrossRefGoogle Scholar
  38. O'Loughlin PM, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep-Sea Res Pt II 58:264–275Google Scholar
  39. Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Prog Ser 463:215–230CrossRefGoogle Scholar
  40. Ratnasingham S, Hebert P (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364PubMedCrossRefGoogle Scholar
  41. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org
  42. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  43. Sands CJ, Griffiths HJ, Downey RV, Barnes DKA, Martin-Ledo R, Linse K (2012) Observations of the ophiuroids from the West Antarctic sector of the Southern Ocean. Ant Sci. doi:10.1017/S0954102012000612 Google Scholar
  44. Smirnov IS, Ahearn C (2009) Ophiuroids—Brittle stars and basket stars. In: Häussermann V, Försterra G (eds) Marine Benthic Fauna of Chilean Patagonia, Nature in Focus, Santiago, pp 832–848Google Scholar
  45. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  46. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 5:758–771CrossRefGoogle Scholar
  47. Stöhr S, Boissin E, Chenuil A (2009) Potential cryptic speciation in Mediterranean populations of Ophioderma (Echinodermata: Ophiuroidea). Zootaxa 2071:1–20Google Scholar
  48. Uthicke S, Byrne M, Conand C (2009) Genetic barcoding of commercial Beche-de-mer species (Echinodermata: Holothuroidea). Mol Ecol Res 10:634–646CrossRefGoogle Scholar
  49. Ward RD, Holmes BH, O’Hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Res 8:1202–1211CrossRefGoogle Scholar
  50. Williams ST (2000) Species boundaries in the starfish genus Linckia. Mar Biol 136:137–148CrossRefGoogle Scholar
  51. Yool A, Martin AP, Fernández C, Clark DR (2007) The significance of nitrification for oceanic new production. Nature 447:999–1002PubMedCrossRefGoogle Scholar
  52. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Timothy D. O’Hara
    • 1
  • Peter J. Smith
    • 1
  • V. Sadie Mills
    • 2
  • Igor Smirnov
    • 3
  • Dirk Steinke
    • 4
  1. 1.Museum VictoriaMelbourneAustralia
  2. 2.National Institute of Water and Atmospheric Research LtdWellingtonNew Zealand
  3. 3.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Biodiversity Institute of OntarioUniversity of GuelphGuelphCanada

Personalised recommendations