Polar Biology

, Volume 36, Issue 1, pp 147–153

Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

  • B. A. Black
  • V. R. von Biela
  • C. E. Zimmerman
  • R. J. Brown
Original Paper


High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p < 0.01), indicating that warmer summers were beneficial for growth, perhaps by increasing fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.


Dendrochronology Sclerochronology Climate change Gates of the Arctic National Park and Preserve Salvelinus namaycush 


  1. Anderson W, Robertson DM, Magnuson JJ (1996) Evidence of recent warming and El Niño related variations in ice breakup of Wisconsin lakes. Limnol Oceanogr 41:815–821CrossRefGoogle Scholar
  2. Arhonditsis GB, Brett MT, Degasperi CL, Schindler DE (2004) Meteorological forcing of thermal dynamics in Lake Washington (USA). Linmol Oceanogr 49:256–270CrossRefGoogle Scholar
  3. Black BA, Boehlert GW, Yoklavich MM (2005) Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Can J Fish Aquat Sci 2284:2277–2284. doi:10.1139/F05-142 CrossRefGoogle Scholar
  4. Black BA, Boehlert GW, Yoklavich MM (2008a) Establishing climate-growth relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using a dendrochronological approach. Fish Oceanogr 17:368–379. doi:10.1111/j.1365-2419.2008.00484.x CrossRefGoogle Scholar
  5. Black BA, Gillespie DC, MacLellan SE, Hand CM (2008b) Establishing highly accurate production-age data using the tree-ring technique of crossdating: a case study for Pacific geoduck (Panopea abrupta). Can J Fish Aquat Sci 65:2572–2578. doi:10.1139/F08-158 CrossRefGoogle Scholar
  6. Black BA, Copenheaver CA, Frank DC, Stuckey MJ, Kormanyos RE (2009) Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeogr Palaeoecol 278:40–47. doi:10.1016/j.palaeo.2009.04.010 CrossRefGoogle Scholar
  7. Black BA, Schroeder ID, Sydeman WJ, Bograd SJ, Lawson PW (2010) Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Can J Fish Aquat Sci 67:1149–1158. doi:10.1139/F10-055 CrossRefGoogle Scholar
  8. Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Academic Press, New York, pp 599–667Google Scholar
  9. Burr JM (1993) Maturity of lake trout from eleven lakes in Alaska. Northwest Sci 67:78–87Google Scholar
  10. Burr JM (2006) Arctic Yukon Kuskokwin Lake trout management plan. Alaska Department of Fish and Game, Fishery Management report no. 06-52, AnchorageGoogle Scholar
  11. Campana SE, Casselman JM, Jones CM (2008) Bomb radiocarbon chronologies in the Arctic, with implications for the age validation of lake trout (Salvelinus namaycush) and other Arctic species. Can J Fish Aquat Sci 65:733–743. doi:10.1139/F10-055 CrossRefGoogle Scholar
  12. D’Arrigo G, Wiles G, Jacoby G, Villalba R (1999) North Pacific sea surface temperatures: past variations inferred from tree rings. Geophys Res Lett 26:2757–2760. doi:10.1029/1999GL900504 CrossRefGoogle Scholar
  13. Douglas MS, Smol JP (1999) Freshwater diatoms as indicators of environmental change in the High Arctic. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, New York, pp 227–244Google Scholar
  14. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253PubMedCrossRefGoogle Scholar
  15. Fritts HC (1976) Tree rings and climate. Academic Press, New YorkGoogle Scholar
  16. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221Google Scholar
  17. Guyette RP, Rabeni CF (1995) Climate response among growth increments of fish and trees. Oecologia 104:272–279. doi:10.1007/BF00328361 CrossRefGoogle Scholar
  18. Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res 18:207–214. doi:10.1111/j.1751-8369.1999.tb00295.x CrossRefGoogle Scholar
  19. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  20. Livingstone DA (1955) Some pollen profiles from Arctic Alaska. Ecology 36:587–600CrossRefGoogle Scholar
  21. Mac MJ (1985) Effects of ration size on preferred temperature of lake charr Salvelinus namaycush. Environ Biol Fish 14:227–231CrossRefGoogle Scholar
  22. Marchitto TM, Jones GA, Goodfriend GA, Weidman CR (2000) Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat Res 53:236–246. doi:10.1006/qres.1999.2107 CrossRefGoogle Scholar
  23. Matta E, Black BA, Wilderbuer T (2010) Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. Mar Ecol Prog Ser 413:137–145. doi:10.1111/j.1751-8369.1999.tb00295.x CrossRefGoogle Scholar
  24. McDonald ME, Hershey AE, Miller MC (1996) Global warming impacts of lake trout in Arctic lakes. Limnol Oceanogr 41:1102–1108CrossRefGoogle Scholar
  25. Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP (2005) Recent primary production increases in arctic lakes. Geophys Res Lett. doi:10.1029/2005GL023693
  26. Pereira DL, Bingham C, Spangler GR, Cohen Y, Conner DJ, Cunningham PK (1995) Construction of a 110-year biochronology from sagittae of freshwater drum (Aplodinotus grunniens). In: Secor DH, Dean JM, Campana SE (eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, pp 177–196Google Scholar
  27. Quinlan R, Douglas MSV, Smol JP (2005) Food web changes in arctic ecosystems related to climate warming. Glob Change Biol 11:1381–1386. doi:10.1111/j.1365-2486.2005.00981.x CrossRefGoogle Scholar
  28. Russell NR, Fish JD, Wootton RJ (1996) Feeding and growth of juvenile sea bass: the effect of ration and temperature on growth rate and efficiency. J Fish Biol 49:206–220. doi:10.1111/j.1095-8649.1996.tb00017.x CrossRefGoogle Scholar
  29. Rypel AL (2009) Climate-growth relationships for largemouth bass (Micropterus salmoides) across three southeastern USA states. Ecol Freshw Fish 18:620–628. doi:10.1111/j.1600-0633.2009.00379.x CrossRefGoogle Scholar
  30. Schneider P, Hook SJ, Radocinski RG, Corlett GK, Hulley GC, Schladow SG, Steissberg TE (2009) Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys Res Lett. doi:10.1029/2009GL040846
  31. Sherriff R, Berg E (2009) Tree-ring reconstruction of historic insect outbreaks in Lake Clark and Katmai National Parks and Preserves. Natural resource technical report NPS/SWAN/NRTR. U.S. National Park Service, Anchorage, AlaskaGoogle Scholar
  32. Smith NG, Krueger CC, Casselman JM (2008) Growth chronologies of white sucker, Castostomus commersoni, and lake trout, Salvelinus namaycush: a comparison among lakes and between trophic levels. Environ Biol Fishes 81:375–386CrossRefGoogle Scholar
  33. Smol JP, Douglas MS (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474. doi:10.1890/060162 CrossRefGoogle Scholar
  34. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi:10.1073/pnas.0500245102 PubMedCrossRefGoogle Scholar
  35. Strom A, Francis RC, Mantua NJ, Miles EL, Peterson DL (2004) North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys Rese Lett. doi:10.1029/2004GL019440
  36. Troyer KD, Johnson RR (1994) Survey of lake trout and arctic char in the Chandler Lake system, Gates of the Arctic National Park and Preserve, 1987 and 1989. U.S. Fish and Wildlife Service, Alaska Fisheries technical report number 26, Fairbanks, AlaskaGoogle Scholar
  37. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282CrossRefGoogle Scholar
  38. Wilson CC, Hebert PDN (1998) Phylogeography and postglacial dispersal of lake trout (Salvelinus namaycush) in North America. Can J Fish Aquat Sci 55:1010–1024. doi:10.1139/cjfas-55-4-1010 CrossRefGoogle Scholar
  39. Winder M, Schindler DE, Essington TE, Litt AH (2009) Disrupted seasonal clockwork in the population dynamics of a freshwater copepod by climate warming. Limnol Oceanogr 54:2493–2505CrossRefGoogle Scholar
  40. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. A. Black
    • 1
  • V. R. von Biela
    • 2
  • C. E. Zimmerman
    • 2
  • R. J. Brown
    • 3
  1. 1.Marine Science InstituteUniversity of Texas at AustinPort AransasUSA
  2. 2.U.S. Geological SurveyAlaska Science CenterAnchorageUSA
  3. 3.U.S. Fish and Wildlife ServiceFairbanksUSA

Personalised recommendations