Polar Biology

, Volume 35, Issue 11, pp 1629–1640 | Cite as

Feeding ecology of shallow water meiofauna: insights from a stable isotope tracer experiment in Potter Cove, King George Island, Antarctica

  • Francesca Pasotti
  • Marleen De Troch
  • Maarten Raes
  • Ann Vanreusel
Original Paper


Antarctic meiofauna is still strongly understudied, and so is its trophic position in the food web. Primary producers, such as phytoplankton, and bacteria may represent important food sources for shallow water metazoans, and the role of meiobenthos in the benthic-pelagic coupling represents an important brick for food web understanding. In a laboratory, feeding experiment 13C-labeled freeze-dried diatoms (Thalassiosira weissflogii) and bacteria were added to retrieved cores from Potter Cove (15-m depth, November 2007) in order to investigate the uptake of 3 main meiofauna taxa: nematodes, copepods and cumaceans. In the surface sediment layers, nematodes showed no real difference in uptake of both food sources. This outcome was supported by the natural δ13C values and the community genus composition. In the first centimeter layer, the dominant genus was Daptonema which is known to be opportunistic, feeding on both bacteria and diatoms. Copepods and cumaceans on the other hand appeared to feed more on diatoms than on bacteria. This may point at a better adaptation to input of primary production from the water column. On the other hand, the overall carbon uptake of the given food sources was quite low for all taxa, indicating that likely other food sources might be of relevance for these meiobenthic organisms. Further studies are needed in order to better quantify the carbon requirements of these organisms.


West Antarctic Peninsula Feeding ecology Meiobenthos Stable isotopes 



We acknowledge the ESF IMCOAST project (Impact of climate induced glacial melting on marine coastal systems in the Western Antarctic Peninsula region, and the SDD-BIANZO (Biodiversity of three representative groups of the Antarctic Zoobenthos: coping with change) project (Belgian science policy) for financial support. The first author financed through an IWT PhD scholarship. The second author was a postdoctoral fellow of the Research Foundation–Flanders (FWO-Flanders, Belgium) at the time of the experiment and is now financed by the Ghent University (BOF-GOA 01GA1911 W). We also thank the Alfred Wegener Institute (Germany) and the Instituto Antartico Argentino for providing the logistics at Dallmann laboratory in Jubany station. A special thank goes to Prof. Doris Abele for her precious assistance during the setup of the experiment. Last, but not least, we would like to thank Dr. Nicole Aberle-Malzahn and Dr. Evangelia Gontikaki for their valuable help given in revising the present work.


  1. Andrassy I (1956) Die Rauminhalts und Gewichtsbestimmung der Fadenwurmer (Nematodes). Acta Zool Hung 2:1–15Google Scholar
  2. Blazewicz-Paszkowyczi M, Ligowski R (2002) Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct Sci 14:11–15CrossRefGoogle Scholar
  3. Brett MT, Kainzb MJ, Taipalea SJ, Seshan H (2009) Phytoplankton not allochthonous carbon sustains herbivorous zooplankton production. PNAS 10:21197–21201CrossRefGoogle Scholar
  4. Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates Inc., SunderlandGoogle Scholar
  5. Cnudde C, Willems A, Van Hoorde K, Vyverman W, Moens T, De Troch M (2011) Effect of food preservation on the grazing behaviour and on the gut flora of the harpacticoid copepod Paramphiascella fulvofasciata. J Exp Mar Biol Ecol 407:63–69CrossRefGoogle Scholar
  6. Corbisier T, Petti M, Skowronski R, Brito T (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): d13C stable-isotope analysis. Polar Biol 27:75–82CrossRefGoogle Scholar
  7. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343CrossRefGoogle Scholar
  8. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149CrossRefGoogle Scholar
  9. de Skowronski RSP, Corbisier T (2002) Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biol 25:126–134Google Scholar
  10. de Skowronski RSP, Corbisier T, Robles FR (1998) Meiofauna along a coastal transect in Admirality bay, King George Island (Antarctica). Pesqui Antàr Bras 3:117–131Google Scholar
  11. de Skowronski RSP, Gheller PF, Bromberg S, David JC, Petti MAV, Corbisier TN (2009) Distribution of microphytobenthic biomass in Martel Inlet, King George Island (Antarctica). Pol Biol 32:839–851CrossRefGoogle Scholar
  12. De Troch M, Steinarsdóttir MB, Chepurnov V, Ólafsson E (2005) Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquat Microb Ecol 39:135–144CrossRefGoogle Scholar
  13. De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Ólafsson E (2006a) Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol 332:1–11CrossRefGoogle Scholar
  14. De Troch M, Houthoofd L, Chepurnov V, Vanreusel A (2006b) Does sediment grain size affect diatom grazing by harpacticoid copepods? Mar Environ Res 61:265–277CrossRefPubMedGoogle Scholar
  15. De Troch M, Grego M, Chepurnov VA, Vincx M (2007) Food patch size, food concentration and grazing efficiency of the harpacticoid Paramphiascella fulvofasciata (Crustacea, Copepoda). J Exp Mar Biol Ecol 343:210–216CrossRefGoogle Scholar
  16. Dierssen HM, Smith RC, Vernet M (2001) Glacial meltwater dynamics in coastal waters West of the Antarctic Peninsula. In: Kennett JP (ed) University of California, Santa BarbaraGoogle Scholar
  17. Domínguez MC, Eraso A (2007) Substantial changes happened during the last years in the icecap of King George, Insular Antactica. In: Tyk A, Stefaniak K (eds) Karst and cryokarst, studies of the faculty of earth sciences. University of Silesia 45:87–110Google Scholar
  18. Eraso A, Domínguez MA (2007): Physicochemical characteristics of the subglacier discharge in Potter Cove, King George Island, Antarctica. In: Tyk A, Stefaniak K (eds) Karst and cryokarst, studies of the faculty of earth sciences, University of Silesia 45: 111–122Google Scholar
  19. Evrard V, Soetaert K, Heip CHR, Huettel M, Xenopoulos MA, Middelburg JJ (2010) Carbon and nitrogen flows through the benthic food web of a photic subtidal sandy sediment. Mar Ecol Prog Ser 416:1–16CrossRefGoogle Scholar
  20. Franco MA, Soetaert K, Van Oevelen D, Van Gansbeke D, Costa MJ, Vincx M, Vanaverbeke J (2008) Density, vertical distribution and trophic responses of metazoan meiobenthos to phytoplankton deposition in contrasting sediment types. Mar Ecol Prog Ser 358:51–62CrossRefGoogle Scholar
  21. Guilini K, Van Oevelen D, Soetaert K, Middelburg JJ, Vanreusel A (2010) Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin. Results of an isotope tracer experiment. Limnol Oceanogr 55:1977–1989CrossRefGoogle Scholar
  22. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 108–132Google Scholar
  23. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489Google Scholar
  24. Higgins RP, Thiel H (1988) Introduction to the study of Meiofauna. Smithsonian Institution Press, WashingtonGoogle Scholar
  25. Ingels J, Van den Driessche P, De Mesel I, Vanhove S, Moens T, Vanreusel A (2010) Evidence for preferred utilisation of bacteria over phytoplankton by deep-sea nematodes in Polar Regions. Mar Ecol Prog Ser 406:121–133CrossRefGoogle Scholar
  26. Jensen P (1984) Measuring carbon content in nematodes. Helgol Meeresunters 38:83–86Google Scholar
  27. Juario JV (1975) Nematode species composition and seasonal fluctuation of a sub littoral meiofauna community in the German Bight. Veröff Inst Meeresforsch Bremerhav 15:283–337Google Scholar
  28. Kaehler S, Pakhomov EA, McQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by d13C and d15N analysis. Mar Ecol Prog Ser 208:13–20CrossRefGoogle Scholar
  29. Kozloff EN (1990) Invertebrates. Sinauer Associates Inc, SunderlandGoogle Scholar
  30. Le Duc D, Probert PK (2010) Small-scale effect of intertidal seagrass (Zostera muelleri) on meiofaunal abundance, biomass, and nematode community structure. J Mar Biol Ass U K 91:579–591Google Scholar
  31. Maria TF, De Troch M, Vanaverbeke J, Esteves AM, Vanreusel A (2011) Use of benthic vs planktonic organic matter by sandy-beach organisms: a food tracing experiment with 13C labelled diatoms. J Exp Mar Biol Ecol 407:309–314CrossRefGoogle Scholar
  32. Mayer M (2000) Zur Ökologie der Benthos-Foraminiferen der Potter Cove (King George Island, Antarktis) = Ecology of benthic foraminifera in the Potter Cove (King George Island, Antarctica). Berichte zur Polarforschung 353:1–126Google Scholar
  33. Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  34. Mincks SL, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by d13C and d15N analysis. Deep-Sea Res II 55:2502–2514CrossRefGoogle Scholar
  35. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Ass U K 77:211–227CrossRefGoogle Scholar
  36. Moens T, Verbeek L, Vincx M (1999) Preservation and incubation time-induced bias in tracer-aided grazing studies on meiofauna. Mar Biol 133:69–77CrossRefGoogle Scholar
  37. Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137CrossRefGoogle Scholar
  38. Moens T, Bouillon S, Gallucci F (2005) Dual stable isotope abundances unravel trophic position of estuarine nematodes. J Mar Biol Ass U K 8:1401–1407CrossRefGoogle Scholar
  39. Moens T, Vanhove S, De Mesel I, Kelemen B, Janssens T, Dewicke A, Vanreusel A (2007) Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol 31:1–13CrossRefGoogle Scholar
  40. Moll A, Braun M, Lluberas A (2006) Determination of glacier velocities on King George Island (Antarctica) by DInSAR geoscience and remote sensing symposium 2006. IGARSS (2006) IEEE international conferenceGoogle Scholar
  41. Mourelatos S, Rougier C, Lacroix G (1992) Radiotracers losses due to freezing in formalin carbon-14-labelled cladocerans. Arch Biol 126:239–253Google Scholar
  42. Nascimento FJA, Karlson AML, Elmgren R (2008) Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages. Limnol Oceanogr 53:2636–2643CrossRefGoogle Scholar
  43. Nedwell DB, Walker TR, Ellis-Evans JC, Clarke A (1993) Measurements of seasonal rates and annual budgets of organic carbon fluxes in an antarctic coastal environment at Signy Island, South Orkney Islands, suggest a broad balance between production and decomposition. Appl Environ Microbiol 59:3989–3995PubMedGoogle Scholar
  44. Nomaki H, Ogawa NO, Ohkouchi N, Suga H, Toyofuku T, Shimanaga M, Nakatsuka T, Kitazato H (2008) Benthic foraminifera as trophic links between phytodetritus and benthic metazoans: carbon and nitrogen isotopic evidence. Mar Ecol Prog Ser 357:153–164CrossRefGoogle Scholar
  45. Nyssen F, Brey T, Lepoint G, Bouquegneau JM, Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287Google Scholar
  46. Schloss I, Ferreyra GA (2002) Primary production light and vertical mixing in Potter Cove a shallow bay in the maritime Antarctic. Polar Biol 25:42–48CrossRefGoogle Scholar
  47. Schloss I, Ferreyra GA, Ruiz-Pino D (2002) Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143CrossRefGoogle Scholar
  48. Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523CrossRefPubMedGoogle Scholar
  49. Schratzberger M, Rees HL, Boyd SE (2000) Effects of simulated deposition of dredged material on structure of nematode assemblages–the role of burial. Mar Biol 136:519–530CrossRefGoogle Scholar
  50. Siciński J, Jażdżewski K, DeBroyer C, Presler P, Ligowski R, Nonato EF, Corbisier TN, Petti MAV, Brito TAS, Lavrado HP, Blażewicz-Paszkowycz M, Pabis K, Jażdżewska A, Campos LS (2011) Admiralty Bay benthos diversity: a census of a complex polar ecosystem. Deep-Sea Res II 59:30–48CrossRefGoogle Scholar
  51. Smith RC, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166CrossRefPubMedGoogle Scholar
  52. Szymelfenig M, Kwaśniewski S, Węsławski JM (1995) Intertidal zone of Svalbard 2. Meiobenthos density and occurrence. Polar Biol 15:137–141CrossRefGoogle Scholar
  53. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fishes. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  54. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid P, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  55. Urban-Malinga B, Moens T (2006) Fate of organic matter in Arctic intertidal sediments: is utilization by meiofauna important? J Sea Res 56:239–248CrossRefGoogle Scholar
  56. Vanhove S, Lee HJ, Beghyw M, Van Gansbeke D, Brockington S, Vincx M (1998) The metazoan meiofauna and its biogeochemical environment the case of an Antarctic shallow water environment. J Mar Biol Ass U K 78:411–434CrossRefGoogle Scholar
  57. Vanhove S, Beghyn M, Van Gansbeke D, Bullough LW, Vincx M (2000) A seasonally varying biotope at Signy Island, Antarctic: implications for meiofaunal structure. Mar Ecol Prog Ser 202:13–25CrossRefGoogle Scholar
  58. Vanreusel A (1990) Ecology of the free-living marine nematodes from the Voordelta (Southern Bight of the North Sea) 1 Species composition and structure of the nematode communities. Cah Biol Mar 31:439–462Google Scholar
  59. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent Rapid Regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274CrossRefGoogle Scholar
  60. Veit-Köhler G (2005) Influence of biotic and abiotic sediment factors on abundance and biomass of harpacticoid copepods in a shallow Antarctic bay. Sci Mar 69:135–145Google Scholar
  61. Veit-Köhler G, Antacli JC, Rose A (2008) Metazoan meiofauna in Potter Cove, King George Island. In: Wiencke C, Ferreyra GA, Abele D, Marenssi S [Hrsg.] The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo). Ber Polarforsch Meeresforsch 571:135–140Google Scholar
  62. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organism’s diversity in soils and sediments. CAB international Wallingford, pp 187–195Google Scholar
  63. Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes: part III Monhysterids: pictorial key to world genera and notes for the identification of British species. Synopses of the British fauna (new series) 53. Field Studies Council: Shrewsbury, UK ISBN 1-85153-260-9 III volumesGoogle Scholar
  64. Wieser W (1953) Die Beziehung zwischen Mundhöhlengestald, Ernahrungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv Zool 4:439–484Google Scholar
  65. Wieser W (1960) Benthic studies in Buzzards bay. II. The meiofauna. Limnol Oceanogr 5:121–137CrossRefGoogle Scholar
  66. Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal seafloor. Nature 424:763–766CrossRefPubMedGoogle Scholar
  67. Wyckmans M, Chepurnov V, Vanreusel A, De Troch M (2007) Effect of food diversity on diatom selection by harpacticoid copepods. J Exp Mar Biol Ecol 345:119–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Francesca Pasotti
    • 1
  • Marleen De Troch
    • 1
  • Maarten Raes
    • 1
  • Ann Vanreusel
    • 1
  1. 1.Marine BiologyGhent UniversityGhentBelgium

Personalised recommendations