Polar Biology

, Volume 35, Issue 9, pp 1433–1438 | Cite as

Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms

  • Yung Mi Lee
  • GoHeung Kim
  • You-Jung Jung
  • Cheng-Dae Choe
  • Joung Han Yim
  • Hong Kum Lee
  • Soon Gyu HongEmail author
Short Note


Microorganisms in polar areas may have important ecological roles in biogeochemical cycles and the food chain. They are adapted to polar environments by means of special physiological adaptation mechanisms that include cold-adapted enzymes and cryoprotectants such as exopolysaccharides. Culture collections for polar microorganisms can provide research resources for ecological and physiological studies. The Polar and Alpine Microbial Collection (PAMC) is a specialized culture collection for maintenance and distribution of polar and alpine microorganisms. A database system was developed to share important data fields with DarwinCore2 and Ocean Biogeographic Information System database schemas. Approximately 1,500 out of 5,500 strains maintained in PAMC have been identified and belonged primarily to the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Many of the microbial strains can grow at low temperature and produce proteases, lipases, and/or exopolysaccharides. PAMC provides search tools based on keywords such as taxonomy, geographical origin, habitat, and physiological characteristics. Biological materials and information provided by PAMC will be important resources for ecological and physiological studies on polar and alpine microorganisms.


Microorganisms Biodiversity Physiological characteristics 



We thank Jumin Lee (Bada System) for his help in preparing the figures and tables. This research was supported by the Korea Polar Research Institute (grants PE06050, PE11030, and E411060).

Supplementary material

300_2012_1182_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
300_2012_1182_MOESM2_ESM.pptx (195 kb)
Fig. S1 Interface for searching strains. a The advanced search interface for a multi-criteria search. b The result page of a strain search (PPTX 194 kb)


  1. Cho KH, Hong SG, Cho HH, Lee YK, Chun J, Lee HK (2008) Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst and Evol Microbiol 58:1300–1303CrossRefGoogle Scholar
  2. Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107PubMedCrossRefGoogle Scholar
  3. Hong SG, Lee YK, Yim JH, Chun J, Lee HK (2008) Sanguibacter antarcticus sp. nov., isolated from Antarctic sea sand. Int J Syst and Evol Microbiol 58:50–52CrossRefGoogle Scholar
  4. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839PubMedCrossRefGoogle Scholar
  5. Kim SJ, Yim JH (2007) Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 45:510–514PubMedGoogle Scholar
  6. Kim D, Park HJ, Lee YM, Hong SG, Lee HK, Yim JH (2010a) Screening for cold-active protease-producing bacteria from the culture collection of polar microorganisms and characterization of proteolytic activities. Kor J Microbiol 46:73–79CrossRefGoogle Scholar
  7. Kim EH, Cho KH, Lee YM, Yim JH, Lee HK, Cho J-C, Hong SG (2010b) Diversity of cold-active protease-producing bacteria from Arctic terrestrial and marine environments revealed by enrichment culture. J Microbiol 48:426–432PubMedCrossRefGoogle Scholar
  8. Kim EH, Jeong H-J, Lee YK, Moon EY, Cho J-C, Lee HK, Hong SG (2011) Actimicrobium antarcticum gen. nov., sp. nov., of the family Oxalobacteraceae, isolated from Antarctic coastal seawater. Curr Microbiol 63:213–217PubMedCrossRefGoogle Scholar
  9. Lee YK, Sung KC, Yim JH, Park KJ, Chung H, Lee HK (2005) Isolation of protease-producing Arctic marine bacteria. Ocean Polar Res 27:215–219CrossRefGoogle Scholar
  10. Lee YK, Hong SG, Cho HH, Cho KH, Lee HK (2007) Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. J Microbiol 45:505–509PubMedGoogle Scholar
  11. Lee YM, Kim SY, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 49:355–362PubMedCrossRefGoogle Scholar
  12. Macura D, Townsley PM (1984) Scandinavian ropy milk—identification and characterization of endogenous ropy lactic Streptococci and their extracellular excretion. J Dairy Sci 67:735–744CrossRefGoogle Scholar
  13. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467PubMedCrossRefGoogle Scholar
  14. Nichols D, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246PubMedCrossRefGoogle Scholar
  15. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392PubMedCrossRefGoogle Scholar
  16. Reddy PVV, Rao SSSN, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Srinivas TN, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovénbreen glacier, an Arctic glacier. Res Microbiol 160:538–546CrossRefGoogle Scholar
  17. Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592PubMedCrossRefGoogle Scholar
  18. Staley JT, Herwig RP (1993) Degradation of particulate organic material in the Antarctic. In: Friedmann EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 241–264Google Scholar
  19. Vazquez SC, Coria SH, Mac Cormack WP (2004) Extracellular proteases from eight psychrotolerant antarctic strains. Microbiol Res 159:157–166PubMedCrossRefGoogle Scholar
  20. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yung Mi Lee
    • 1
  • GoHeung Kim
    • 1
  • You-Jung Jung
    • 1
  • Cheng-Dae Choe
    • 2
  • Joung Han Yim
    • 1
  • Hong Kum Lee
    • 1
  • Soon Gyu Hong
    • 1
    Email author
  1. 1.Division of Polar Life SciencesKorea Polar Research InstituteYeonsu-gu, IncheonRepublic of Korea
  2. 2.BRN ScienceSeoul National UniversityKwanak-gu, SeoulRepublic of Korea

Personalised recommendations