Polar Biology

, Volume 35, Issue 9, pp 1375–1393 | Cite as

Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities

  • Karen A. Cameron
  • Andrew J. Hodson
  • A. Mark Osborn
Original Paper


Microorganisms have a crucial role to play in the cycling of nutrients within glacial environments. These systems are often nutrient-limited, and so biogeochemical reactions, which ensure the availability of nutrients for microbial communities, are critical for the maintenance of these systems. This study uses molecular biology to characterise the supraglacial cryoconite microbial communities that are capable of cycling carbon and nitrogen in a range of glacial environments. Organisms with the potential to photosynthesise were identified, including Cyanobacteria, Actinobacteria, Betaproteobacteria, Stramenopiles and Haptophyceae. Organisms with the potential to perform nitrification and denitrification processes were also identified and featured Betaproteobacteria, Alphaproteobacteria, Thaumarchaeota and Cyanobacteria. While it is unlikely that the chemical and physical parameters of the supraglacial environment will facilitate optimal rates of all of the nitrogen-related biogeochemical processes, the transport of these cryoconite communities to downstream locations, where more favourable conditions may prevail, will perhaps provide a valuable inoculation of microorganisms with the genetic potential to catalyse these reactions elsewhere.


Glacier Cryoconite Microbial diversity Biogeochemical Carbon Nitrogen 


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Bio 215:403–410Google Scholar
  2. Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Bio 15:955–960CrossRefGoogle Scholar
  3. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Env Microbiol 72:5734–5741CrossRefGoogle Scholar
  4. Barker J, Sharp M, Fitzsimons S, Turner R (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:163–172CrossRefGoogle Scholar
  5. Bothe H, Ferguson SJ, Newton WE (2007) Biology of the nitrogen cycle. Elsevier, OxfordGoogle Scholar
  6. Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M (2011) Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787PubMedCrossRefGoogle Scholar
  7. Braker G, Tiedje JM (2003) Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 69:3476–3483PubMedCrossRefGoogle Scholar
  8. Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775PubMedGoogle Scholar
  9. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D’Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186PubMedCrossRefGoogle Scholar
  10. Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. Appl Environ Microbiol. doi:10.1111/j.1574-6941.2011.01277.x Google Scholar
  11. Canfield DE, Green WJ (1985) The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochem 1:233–256CrossRefGoogle Scholar
  12. Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183PubMedGoogle Scholar
  13. Clausen HB, Stampe M, Hammer CU, Hvidberg CS, Dahl-Jensen D, Steffensen JP (2001) Glaciological and chemical studies on ice cores from Hans Tausen Iskappe, Greenland. Meddelelser om Grønland Geosci 39:123–149Google Scholar
  14. Darwin A, Hussain H, Griffiths L, Sambongi Y, Busby S, Cole J (1993) Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol 9:1255–1265PubMedCrossRefGoogle Scholar
  15. Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612PubMedCrossRefGoogle Scholar
  16. Dong LF, Smith CJ, Papaspyrou S, Stott A, Osborn AM, Nedwell DB (2009) Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom). Appl Environ Microbiol 75:3171–3179PubMedCrossRefGoogle Scholar
  17. Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160PubMedCrossRefGoogle Scholar
  18. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244CrossRefGoogle Scholar
  19. Flanagana D, Gregorya L, Cartera J, Karakas-Sena A, Richardsona D, Spiroa S (2006) Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270CrossRefGoogle Scholar
  20. Fogg GE (1967) Observations on the snow algae of the South Orkney Islands. Philos Trans R Soc Lond B Biol Sc Biol Sci 252:279–287CrossRefGoogle Scholar
  21. Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res. doi:10.1029/2006JG000358 Google Scholar
  22. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788PubMedCrossRefGoogle Scholar
  23. Gerdel RW, Drouet F (1960) The cryoconite of the Thule Area, Greenland. Trans Am Microsc Soc 79:256–272CrossRefGoogle Scholar
  24. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic Bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  25. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  26. Hodson AJ (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour Res. doi:10.1029/2005WR004311 Google Scholar
  27. Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochem 72:233–256CrossRefGoogle Scholar
  28. Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res. doi:10.1029/2007JG000452 Google Scholar
  29. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  30. Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010a) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–362CrossRefGoogle Scholar
  31. Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010b) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51:123–129CrossRefGoogle Scholar
  32. Hollocher TC, Tate ME, Nicholas DJ (1981) Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 256:10834–10836PubMedGoogle Scholar
  33. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982PubMedCrossRefGoogle Scholar
  34. Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72:5689–5701PubMedCrossRefGoogle Scholar
  35. Jones H, Deblois C (1986) Chemical dynamics of N-containing ionic species in a Boreal forest snowcover during the spring melt period. Hydrol Process 1:271–282CrossRefGoogle Scholar
  36. Jungblut AD, Neilan BA (2009) nifH gene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarct Sci 22:117–122CrossRefGoogle Scholar
  37. Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962PubMedCrossRefGoogle Scholar
  38. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110. DNA Res 9:189–197PubMedCrossRefGoogle Scholar
  39. Kim O, Junier P, Imhoff J, Witcel K (2008) Comparative analysis of ammonia monooxygenase (amoA) genes in the water column and sediment–water interface of two lakes and the Baltic Sea. FEMS Microbiol Ecol 66:367–378PubMedCrossRefGoogle Scholar
  40. Knowles R (1982) Denitrification. Microbiol Mol Biol Rev 46:43–70Google Scholar
  41. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1384–1390CrossRefGoogle Scholar
  42. Kuhn M (2001) The nutrient cycle through snow and ice, a review. Aquat Sci-Res Across Boundaries 63:150–167Google Scholar
  43. Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155PubMedCrossRefGoogle Scholar
  44. Lafrenière M, Sharp M (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165CrossRefGoogle Scholar
  45. Langford H, Hodson A, Banwart S (2011) Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard. Appl Geochem 26:S206–S209CrossRefGoogle Scholar
  46. MacDonell S, Fitzsimons S (2008) The formation and hydrological significance of cryoconite holes. Prog Phys Geogr 32:595–610CrossRefGoogle Scholar
  47. Matheson FE, Nguyen ML, Cooper AB, Burt TP, Bull DC (2002) Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol Eng 19:249–264CrossRefGoogle Scholar
  48. Matoba S, Narita H, Motoyama H, Kamiyama K, Watanabe O (2002) Ice core chemistry of Vestfonna Ice Cap in Svalbard, Norway. J Geophys Res. doi:10.1029/2002JD002205 Google Scholar
  49. McTavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444PubMedGoogle Scholar
  50. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Sci 324:397–400CrossRefGoogle Scholar
  51. Mintie AT, Heichen RS, Cromack K Jr, Myrold DD, Bottomley PJ (2003) Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade Mountains. Appl Environ Microbiol 69:3129–3136PubMedCrossRefGoogle Scholar
  52. Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74CrossRefGoogle Scholar
  53. Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig Beih 123:173–197Google Scholar
  54. Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a High Arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87PubMedCrossRefGoogle Scholar
  55. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  56. Negrisolo E, Maistro S, Incarbone M, Moro I, la Valle L, Broady PA, Andreoli C (2004) Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes. Mol Phylogenet Evol 33:156–170PubMedCrossRefGoogle Scholar
  57. Nogales B, Timmis KN, Nedwell DB, Osborn AM (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68:5017–5025PubMedCrossRefGoogle Scholar
  58. Nordin A, Schmidt IK, Shaver GR (2004) Nitrogen uptake by Arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962CrossRefGoogle Scholar
  59. Olson JB, Steppe TF, Litaker RW, Paerl JW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238PubMedCrossRefGoogle Scholar
  60. Park SW, Hwang EH, Jang HS, Lee JH, Kang BS, Oh JI, Kim YM (2009) Presence of duplicate genes encoding a phylogenetically new subgroup of form I Ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JC1 DSM 3803. Res Microbiol 160:159–165PubMedCrossRefGoogle Scholar
  61. Paul JH, Albin A, Boris W (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Marine Ecol Prog Ser 198:9–18CrossRefGoogle Scholar
  62. Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832PubMedCrossRefGoogle Scholar
  63. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128PubMedCrossRefGoogle Scholar
  64. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2007) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 25:478CrossRefGoogle Scholar
  65. Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct Antarct Alp Res 36:84–91CrossRefGoogle Scholar
  66. Priscu JC, Christner BC (2004) Earths icy bioshpere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, WashingtonGoogle Scholar
  67. Řehák J, Řehák S, Stibal M, Řeháková K, Šabacká M, Kostka S (2007) Glacier caves and drainage systems of the northern part of Hornsund area, southwest Spitsbergen, Svalbard. In: 8th GLACKIPR symposium, Sosnowiec, Poland, p 111Google Scholar
  68. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Env Microbiol 63:4704–4712Google Scholar
  69. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  70. Santoro A, Francis C, Sieyes N, Boehm A (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Env Microbiol 10:1068–1079CrossRefGoogle Scholar
  71. Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 25:591–596Google Scholar
  72. Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162:61–68PubMedCrossRefGoogle Scholar
  73. Schalk J, de Vries S, Kuenen JG, Jetten MSM (2000) Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochem 39:5405–5412CrossRefGoogle Scholar
  74. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the Myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289PubMedCrossRefGoogle Scholar
  75. Schütte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268PubMedCrossRefGoogle Scholar
  76. Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like Ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Env Microbiol 71:175–184CrossRefGoogle Scholar
  77. Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876PubMedGoogle Scholar
  78. Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73:3612–3622PubMedCrossRefGoogle Scholar
  79. Song B, Ward B (2006) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43:349–357CrossRefGoogle Scholar
  80. Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the Ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiol 73:316–325CrossRefGoogle Scholar
  81. Stibal M, Tranter M (2007) Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. J Geophys Res. doi:10.1029/2007JG000429 Google Scholar
  82. Stibal M, Tranter M, Benning LG, Rehak J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Env Microbiol 10:2172–2178CrossRefGoogle Scholar
  83. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nat 440:790–794CrossRefGoogle Scholar
  84. Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189PubMedGoogle Scholar
  85. Takeuchi N, Kohshima S, Goto-Azuma K, Koerner RM (2001a) Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps) Mem. Natl Inst Polar Res 54:495–505Google Scholar
  86. Takeuchi N, Kohshima S, Seko K (2001b) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122CrossRefGoogle Scholar
  87. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  88. Telling J, Anesio AM, Hawkings J, Tranter M, Wadham JL, Hodson AJ, Irvine-Fynn T, Yallop ML (2010) Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann Glaciol 51:153–162CrossRefGoogle Scholar
  89. Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson AJ, Butler C, Wadham JL (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res. doi:10.1029/2010JG001632 Google Scholar
  90. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  91. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of Cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447PubMedCrossRefGoogle Scholar
  92. Tranter M, Brown G, Raiswell R, Sharp M, Gurnell A (1993) A conceptual model of solute acquisition by Alpine glacial meltwaters. J Glaciol 39:573–581Google Scholar
  93. Tranter M, Brown G, Hodson A, Gurnell A, Sharp M (1994) Variations in the nitrate concentration of glacial runoff in Alpine and sub-Polar environments. Snow and ice covers: interactions with the atmosphere and ecosystems. In: Proceedings of Yokohama Symposia J2 and J5, July 1993. IAHS Publ. no. 423, vol 223, pp 299–311Google Scholar
  94. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995PubMedCrossRefGoogle Scholar
  95. van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251PubMedGoogle Scholar
  96. Vincent WF, Gibson JAE, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the High Arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141PubMedCrossRefGoogle Scholar
  97. von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  98. Warnecke-Eberz U, Friedrich B (1993) Three nitrate reductase activities in Alcaligenes eutrophus. Arch Microbiol 159:405–409CrossRefGoogle Scholar
  99. Watson GM, Tabita FR (1997) Microbial Ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22PubMedCrossRefGoogle Scholar
  100. Wawrik B, Paul JH, Tabita FR (2002) Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microbiol 68:3771–3779PubMedCrossRefGoogle Scholar
  101. Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1985) Cryoconite holes on glaciers. BioSci 35:499–503CrossRefGoogle Scholar
  102. Wynn P, Hodson A, Heaton T (2006) Chemical and isotopic switching within the subglacial environment of a High Arctic glacier. Biogeochem 78:173–193CrossRefGoogle Scholar
  103. Wynn PM, Hodson AJ, Heaton THE, Chenery SR (2007) Nitrate production beneath a High Arctic glacier, Svalbard. Chem Geol 244:88–102CrossRefGoogle Scholar
  104. Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in Dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729PubMedCrossRefGoogle Scholar
  105. Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526PubMedGoogle Scholar
  106. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar
  107. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Karen A. Cameron
    • 1
    • 4
  • Andrew J. Hodson
    • 2
    • 3
  • A. Mark Osborn
    • 1
    • 5
  1. 1.Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK
  2. 2.Department of GeographyThe University of SheffieldSheffieldUK
  3. 3.Department of Arctic GeologyThe University Centre in SvalbardLongyearbyenNorway
  4. 4.Applied Physics Laboratory, Polar Science CenterUniversity of WashingtonSeattleUSA
  5. 5.Department of Biological ScienceUniversity of HullHullUK

Personalised recommendations