Polar Biology

, Volume 35, Issue 4, pp 509–517 | Cite as

Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands

  • L. Lalouette
  • C. M. Williams
  • M. Cottin
  • B. J. Sinclair
  • D. Renault
Original Paper

Abstract

Thermal tolerance is one of the major determinants of successful establishment and spread of invasive aliens. Merizodus soledadinus (Coleoptera, Carabidae) was accidentally introduced to Kerguelen from the Falkland Islands in 1913. On Kerguelen, the climate is cooler than the Falklands Islands but has been getting warmer since the 1990s, in synchrony with the rapid expansion of M. soledadinus. We aimed to investigate the thermal sensitivity in adults of M. soledadinus and hypothesised that climate warming has assisted the colonisation process of M. soledadinus. We examined (1) survival of constant low temperatures and at fluctuating thermal regimes, (2) the critical thermal limits (CTmin and CTmax) of acclimated individuals (4, 8 and 16°C), (3) the metabolic rates of acclimated adults at temperatures from 0 to 16°C. The FTRs moderately increased the duration of survival compared to constant cold exposure. M. soledadinus exhibited an activity window ranged from −5.5 ± 0.3 to 38 ± 0.5°C. The Q10 after acclimation to temperatures ranging from 0 to 16°C was 2.49. Our work shows that this species is only moderately cold tolerant with little thermal plasticity. The CTmin of M. soledadinus are close to the low temperatures experienced in winter on Kerguelen Islands, but the CTmax are well above summer conditions, suggesting that this species has abundant scope to deal with current climate change.

Keywords

Sub-Antarctic island Insect Critical thermal limit Survival Fluctuating thermal regime Metabolic rate 

References

  1. Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745CrossRefGoogle Scholar
  2. Anderson AR, Hoffmann AA, McKechnie SW (2005) Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genet Res 85:15–22PubMedCrossRefGoogle Scholar
  3. Arrhenius S (1915) Quantitative laws in biological chemistry. Bell, LondonCrossRefGoogle Scholar
  4. Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond B 357:849–861CrossRefGoogle Scholar
  5. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994PubMedCrossRefGoogle Scholar
  6. Bergstrom DM, Chown SL (1999) Life at the front, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–477PubMedCrossRefGoogle Scholar
  7. Bergstrom DM, Convey P, Huiskes AHL (2006) Trends in Antarctic terrestrial and limnetic ecosytems. Springer, The NetherlandsCrossRefGoogle Scholar
  8. Block W, Somme L (1983) Low temperature adaptations in beetles from the sub-Antarctic Islands of South Georgia. Polar Biol 2:109–114CrossRefGoogle Scholar
  9. Chevrier M (1996) Introduction de deux espèces d’insectes aux Iles Kerguelen: processus de colonisation et exemples d’interactions. Thèse de Doctorat d’Université, Université de Rennes 1Google Scholar
  10. Colinet H, Hance T (2010) Inter-specific variation in the response to low temperature storage in different aphid parasitoids. Ann Appl Biol 156:147–156CrossRefGoogle Scholar
  11. Colinet H, Renault D, Hance T, Vernon P (2006) The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani. Physiol Entomol 31:234–240CrossRefGoogle Scholar
  12. Colinet H, Hance T, Vernon P, Bouchereau A, Renault D (2007a) Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius Colemani (Hymenoptera: Aphidiinae)? Comp Biochem Physiol A 147:484–492CrossRefGoogle Scholar
  13. Colinet H, Nguyen TTA, Cloutier C, Michaud D, Hance T (2007b) Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochem Mol Biol 37:1177–1188PubMedCrossRefGoogle Scholar
  14. Colinet H, Lee SF, Hoffmann A (2010) Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J 277:174–185PubMedCrossRefGoogle Scholar
  15. Colinet H, Lalouette L, Renault D (2011) A model for the time–temperature–mortality relationship in the chill-susceptible beetle, Alphitobius diaperinus, exposed to fluctuating thermal regimes. J Therm Biol (in press). doi:10.1016/j.jtherbio.2011.07.004
  16. Convey P (2001) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther GR, Burga CA, Edwards PJ (eds) ‘‘Fingerprints’’ of climate change–adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42Google Scholar
  17. Convey P (2006) Antarctic climate change and its influences on terrestrial ecosystems. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 235–272Google Scholar
  18. Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period. Ecology 83:3130–3140CrossRefGoogle Scholar
  19. Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602CrossRefGoogle Scholar
  20. Coulson SJ, Bale JS (1996) Supercooling and survival of the beech leaf mining weevil Rhynchaenus fagi L. (Coleoptera: Curculionidae). J Insect Physiol 42:617–623CrossRefGoogle Scholar
  21. Crafford JE, Chown SL (1993) Respiratory metabolism of sub-Antarctic insects from different habitats on Marion Island. Polar Biol 13:411–415CrossRefGoogle Scholar
  22. Darlington PJ (1970) Coleoptera: Carabidae of South Georgia. Pac Insects Monogr 23:234Google Scholar
  23. David JR, Gibert P, Pla E, Petavy G, Karan D, Moreteau B (1998) Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J Therm Biol 23:291–299CrossRefGoogle Scholar
  24. Fischer K, Kölzow N, Höltje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166:23–33PubMedCrossRefGoogle Scholar
  25. Frenot Y, Chown SL, Whinam J, Selkirk M, Convey P, Skotnicki M, Bergstrom M (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  26. Ghalambor C, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17PubMedCrossRefGoogle Scholar
  27. Glanville EJ, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 209:4869–4877PubMedCrossRefGoogle Scholar
  28. Hanč Z, Nedvĕd O (1999) Chill injury at alternating temperatures in Orchesella cincta (Collembola: Entomobryidae) and Pyrrhocoris apterus (heteroptera: Pyrrhocoridae). Eur J Entomol 96:165–168Google Scholar
  29. Jeannel R (1940) Croisière du Bougainville aux îles australes françaises. III. Coléoptères. Memoires du Muséum National d’Histoire Naturelle, France, Série A 14:63–202Google Scholar
  30. Johns PM (1974) Arthropoda of the subantarctic islands of New Zealand. I. Coleoptera: Carabidae. Southern New Zealand, Patagonian and Falkland Islands insular Carabidae. J R Soc N Z 4:283–302CrossRefGoogle Scholar
  31. Keister M, Buck J (1974) Respiration: some exogenous and endogenous effects on rate of respiration. The physiology of the Insecta. Academic Press, New York, pp 469–509Google Scholar
  32. Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414CrossRefGoogle Scholar
  33. Knies JL, Kingsolver JG (2010) Erroneous Arrhenius: modified Arrhenius model best explains the temperature dependence of ectotherm fitness. Am Nat 176:227–233PubMedCrossRefGoogle Scholar
  34. Koštál V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J Exp Biol 207:1509–1521PubMedCrossRefGoogle Scholar
  35. Koštál V, Renault D, Mehrabianová A, Bastl J (2007) Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp Biochem Physiol A 147:231–238CrossRefGoogle Scholar
  36. Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS (2010) Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J Insect Physiol 56:822–830PubMedCrossRefGoogle Scholar
  37. Lalouette L, Koštál V, Colinet H, Gagneul D, Renault D (2007) Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J 274:1759–1767PubMedCrossRefGoogle Scholar
  38. Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D (2011) Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp Biochem Physiol A 158:229–234CrossRefGoogle Scholar
  39. Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands to assess the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invasions 13:1195–1208CrossRefGoogle Scholar
  40. Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, New YorkCrossRefGoogle Scholar
  41. Marshall KE, Sinclair BJ (2010) Repeated stress exposure results in a survival-reproduction trade off in Drosophila melanogaster. Proc R Soc Lond 277:963–969CrossRefGoogle Scholar
  42. Nedvěd O, Lavy D, Verhoef HA (1998) Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct Ecol 12:816–824CrossRefGoogle Scholar
  43. Ottesen PS (1990) Diel activity patterns of Carabidae, Staphylinidae and Perimylopidae (Coleoptera) at South Georgia, Sub-Antarctic. Polar Biol 10:515–519CrossRefGoogle Scholar
  44. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  45. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  46. Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Res Part II 53:1071–1104CrossRefGoogle Scholar
  47. Pörtner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313PubMedCrossRefGoogle Scholar
  48. Powell SJ, Bale JS (2006) Effect of long-term and rapid cold hardening on the cold torpor temperature of an aphid. Physiol Entomol 31:348–352CrossRefGoogle Scholar
  49. Renault D (2011) Long-term after-effects of cold exposure in adult Alphitobius diaperinus (Tenebrionidae): the need to link survival ability with subsequent reproductive success. Ecol Entomol 36:36–42CrossRefGoogle Scholar
  50. Renault D, Nedvĕd O, Hervant F, Vernon P (2004) The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiol Entomol 29:139–145CrossRefGoogle Scholar
  51. Rojas RR, Leopold RA (1996) Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33:447–458CrossRefGoogle Scholar
  52. Sinclair BJ, Roberts SP (2005) Acclimation, shock and hardening in the cold. J Therm Biol 30:557–562CrossRefGoogle Scholar
  53. Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262CrossRefGoogle Scholar
  54. Smith VR (2002) Climate change in the sub-Antarctic: an illustration from Marion Island. Clim Change 52:345–357CrossRefGoogle Scholar
  55. Sømme L (1974) Anaerobiosis in some alpine Coleoptera. Norsk Entomologisk Tidsskrift 21:155–158Google Scholar
  56. Sømme L, Ring RA, Block W, Worland MR (1989) Respiratory metabolism of Hydromedion sparsutum and Perimylops antarcticus (Coleoptera, Perimylopidae) from South Georgia. Polar Biol 10:135–139Google Scholar
  57. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256CrossRefGoogle Scholar
  58. Terblanche JS, Klok CJ, Krafsur ES, Chown SL (2006) Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modeling. Am J Trop Med Hyg 74:786–794PubMedGoogle Scholar
  59. Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc R Soc B 274:2935–2942PubMedCrossRefGoogle Scholar
  60. Terblanche JS, Nyamukondiwa C, Kleynhans E (2010) Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Caratitis capitata). Entomol Exp Appl 137:304–315CrossRefGoogle Scholar
  61. Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? Biol Invasions 193:197–211CrossRefGoogle Scholar
  62. Todd CM (1997) Respiratory metabolism in two species of carabid beetle from the sub-Antarctic island of South Georgia. Polar Biol 18:66–171CrossRefGoogle Scholar
  63. Todd CM, Block W (1997) Responses to desiccation in four coleopterans from sub-Antarctic South Georgia. J Insect Physiol 43:905–913PubMedCrossRefGoogle Scholar
  64. Tollarová-Borovanská M, Lalouette L, Koštál V (2009) Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of 70 kDa heat shock protein expression. CryoLetters 30:312–319PubMedGoogle Scholar
  65. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16Google Scholar
  66. Wang HS, Zhou CS, Guo W, Kang L (2006) Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust. Cryobiology 53:206–217PubMedCrossRefGoogle Scholar
  67. Williams CM, Pelini SL, Hellmann JJ, Sinclair BJ (2010) Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biol Lett 6:274–277PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. Lalouette
    • 1
  • C. M. Williams
    • 2
  • M. Cottin
    • 3
  • B. J. Sinclair
    • 2
  • D. Renault
    • 1
  1. 1.Université de Rennes 1, UMR CNRS 6553Rennes CedexFrance
  2. 2.Department of BiologyThe University of Western OntarioLondonCanada
  3. 3.Université de Strasbourg IPHC, UMR CNRS 7178StrasbourgFrance

Personalised recommendations