Polar Biology

, 34:1689

Remote sensing of vegetation cover change in islands of the Kerguelen archipelago

Original Paper

Abstract

The plant communities in the Iles Kerguelen (South Indian Ocean) have been extensively modified by human activities, particularly through the deliberate release of rabbits, and the intentional or accidental introduction of several plant species. During the 1990 and 2000s, a decrease in precipitation resulted in a drastic reduction of some native plant species and in the increase in alien taxa. To monitor at a wide spatial scale the rapid changes of vegetation cover induced by summer droughts, we developed a method combining field data and satellite image analysis. A long-term field monitoring of plant communities was initiated on five small islands in 1992, and annually continued for over 15 years on a total of 161 line transects. Among these islands, the rabbit—which was the only introduced herbivore—was eradicated on three, remained on one control island, and had never been present on a second control island. We computed a linear model to link remote sensored vegetation indexes to plant cover deduced from line transects in numerous habitat types. After testing 14 vegetation indexes, we used a model based on the normalized difference vegetation index to precisely map the vegetation cover at several dates. A map of differences and spatial statistics indicated that vegetation cover, as a whole, decreased over the 15-year period. This study provides a reliable tool for long-term monitoring of the dynamics of plant cover in relation to climate change on the Iles Kerguelen.

Keywords

Remote sensing Climate change Vegetation cover Vegetation index Sub-Antarctic islands 

References

  1. Beck PSA, Atzberger C, Hogda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334CrossRefGoogle Scholar
  2. Blackburn GA (1999) Relationships between spectral refectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sens Environ 70:224–237CrossRefGoogle Scholar
  3. Breshears DR, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Rommei WH, Kastensf JH, Floydk ML, Belnapl J, Andersonc JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. PNAS 102:15144–15148PubMedCrossRefGoogle Scholar
  4. Chapuis J-L, Boussès P, Barnaud G (1994) Alien mammals, impact and management in the French Subantarctic Islands. Biol Conserv 67:97–104CrossRefGoogle Scholar
  5. Chapuis J-L, Le Roux V, Asseline J, Lefèvre L, Kerleau F (2001) Eradication of the rabbit (Oryctolagus cuniculus) by poisoning, on three islands of the subantarctic Archipelago of Kerguelen. Wildl Res 28:323–331CrossRefGoogle Scholar
  6. Chapuis J-L, Frenot Y, Lebouvier M (2002) Une gamme d’îles de référence, un atout majeur pour l’évaluation de programmes de restauration dans l’archipel de Kerguelen. Rev Écol (Terre Vie) supplément 9:121–130Google Scholar
  7. Chapuis J-L, Frenot Y, Lebouvier M (2004) Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biol Conserv 117:167–179CrossRefGoogle Scholar
  8. Chen J (1996) Evaluation of vegetation indexes and modified simple ratio for boreal applications. Can J Remote Sens 22:229–242Google Scholar
  9. Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005) Introduced predators transform Subarctic islands from grassland to tundra. Science 307:1959–1961PubMedCrossRefGoogle Scholar
  10. Donohue RJ, Roderick ML, McVicar TR (2008) Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sens Environ 112:2938–2949CrossRefGoogle Scholar
  11. Forgeard F, Chapuis J-L (1984) Impact du lapin de garenne, Oryctolagus cuniculus, sur la végétation des pelouses incendiées de Paimpont (Ille–et–Vilaine, France). Acta Oecol 5:215–228Google Scholar
  12. Frenot Y, Gloaguen J-C, Cannavacciuolo M, Bellido A (1998) Primary succession on glacier forelands in the Kerguelen Islands (Subantarctic). J Veg Sci 9:75–84CrossRefGoogle Scholar
  13. Frenot Y, Gloaguen J-C, Massé L, Lebouvier M (2001) Uman activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50CrossRefGoogle Scholar
  14. Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergstrom D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  15. Fretwell PT, Convey P, Fleming AH, Peat HJ, Hughes KA (2011) Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol 34:273–281CrossRefGoogle Scholar
  16. Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307PubMedCrossRefGoogle Scholar
  17. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298CrossRefGoogle Scholar
  18. Goel NS, Quin W (1994) Influences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR: a computer simulation. Remote Sens Environ 10:309–347Google Scholar
  19. Goward SN, Prince SD (1995) Transient effects of climate on vegetation dynamics: satellite observations. J Biogeogr 22:549–563CrossRefGoogle Scholar
  20. Hakvoort JHM, Heineke M, Heymann M, Kühl K, Riethmüller H, Witte R (1998) Optical remote sensing of microphytobenthic biomass: a method to monitor tidal flat erodability. Senckenbergiana Mar 29:77–85CrossRefGoogle Scholar
  21. Højsgaard S, Halekoh U, Yan J (2005) The R package geepack for generalized estimating quations. J Stat Softw 15:1–11Google Scholar
  22. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRefGoogle Scholar
  23. Huete AR, Liu HQ (1994) An error and sensitivity analysis of the atmospheric and soil-correcting variants of the NDVI for MODIS-EOS. IEEE Trans Geosci Remote Sens 32:897–905CrossRefGoogle Scholar
  24. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112:3833–3845CrossRefGoogle Scholar
  25. Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–106CrossRefGoogle Scholar
  26. Jordan CF (1969) Determination of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRefGoogle Scholar
  27. Katawa Y, Ueno S, Kusaka T (1988) Radiometric correction for atmospheric and topographic effects on landsat Mss images. Int J Remote Sens 9:729–748CrossRefGoogle Scholar
  28. Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. PNAS 105:11823–11826PubMedCrossRefGoogle Scholar
  29. Kidder JH (1876) Contributions to the natural history of Kerguelen Island, made in connection with the United States transit-of-vénus expedition, 1874–1875. Bull US Nat Mus 3:1–122Google Scholar
  30. Laparie M, Lebouvier M, Lalouette L, Renault D (2010) Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions 12:3405–3417CrossRefGoogle Scholar
  31. Lebouvier M, Laparie M, Hulle′A, Marais Y, Cozic L, Lalouette P, Vernon T, Candresse, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invasions 13:1195–1208Google Scholar
  32. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  33. Lymburner L, Beggs PJ, Jacobson CR (2000) Estimation of canopy-average surface-specific leaf area using Landsat TM data. PE&RS 66:183–191Google Scholar
  34. Maron JL, Estes JA, Croll DA, Danner EM, Elmendorf SC, Buckelew SL (2006) An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol Monogr 76:3–24CrossRefGoogle Scholar
  35. Mulder CPH, Grant-Hoffman MN, Towns DR, Bellingham PJ, Wardle DA, Durrett MS, Fukami T, Bonner KI (2009) Direct and indirect effects of rats: does rat éradication restore ecosystem functioning of New Zealand seabird islands? Biol Invasions 11:1671–1688CrossRefGoogle Scholar
  36. Murray H, Lucieer A, Williams R (2010) Texture-based classification of sub-Antarctic vegetation communities on heard Island. Int J App Earth Obs Geoinformation 12:138–149CrossRefGoogle Scholar
  37. Mutanga O, Skidmore AK (2004) Narrow band vegetation indexes solve the saturation problem in biomass estimation. Int J Remote Sens 25:1–16Google Scholar
  38. Nemani R, Pierce L, Running S (1993) Forest ecosystem process at the watershed scale: sensitivity to remotely-sensed leaf area index estimates. Int J Remote Sens 14:2519–2539CrossRefGoogle Scholar
  39. Pinty B, Verstraete MM (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101:15–20CrossRefGoogle Scholar
  40. Poissonet P, Poissonet J (1969) Etudes comparées des diverses méthodes d’analyse de la végétation des formations herbacées denses et permanentes. Conséquences pour les applications agronomiques. C.N.R.S.-C.E.P.E. Montpellier, doc. No. 50Google Scholar
  41. Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index: MSAVI. Remote Sens Environ 48:119–126CrossRefGoogle Scholar
  42. Raynolds MK, Walker DA, Maier HA (2006) NDVI patterns and phytomass distributions in the circumpolar arctic. Remote Sens Environ 102:271–281CrossRefGoogle Scholar
  43. Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indexs. Remote Sens Environ 55:95–107CrossRefGoogle Scholar
  44. Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384CrossRefGoogle Scholar
  45. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the third ERTS symposium, 1, Washington, DC (US Gov. Printing Office), pp 309–317Google Scholar
  46. Santin-Janin H, Garel M, Chapuis J-L, Pontier D (2010) Assessing the performance of NDVI as a proxy of plant biomass using non-linear models: a case study on the Kerguelen archipelago. Polar Biol 32:861–871CrossRefGoogle Scholar
  47. Sokal RR, Rohlf R (1995) Biometry, 3rd edn. Freeman, San FranciscoGoogle Scholar
  48. Vermote EF, Tanré D, Deuzé JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35:675–686CrossRefGoogle Scholar
  49. Vernon P, Vannier G, Tréhen P (1998) A comparative approach to the entomological diversity of polar regions. Acta Oecol 19:303–308CrossRefGoogle Scholar
  50. Verstraete MM, Pinty B (1996) Designing optimal spectral indexs for remote sensing applications. IEEE Trans Geosci Remote Sens 34:1254–1265CrossRefGoogle Scholar
  51. Virtanen T, Mikkola K, Patova E, Nikula A (2002) Satellite image analysis of human caused changes in the tundra vegetation around the city of Vorkuta, north-European Russia. Environ Pollut 120:647–658PubMedGoogle Scholar
  52. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  53. Walther G-R, Post E, Convey P, Menzel A, Parmesank C, Beebee TJC, Fromentin JM, Hoegh-GuldbergI O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395Google Scholar
  54. Zhou L, Kaufmann RK, Tian Y, Myneni RB, Tucker CJ (2003) Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J Geophys Res 108(D1):4004. doi:10.1029/2002JD002510 Google Scholar
  55. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions. In: Ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marc Robin
    • 1
  • Jean-Louis Chapuis
    • 2
  • Marc Lebouvier
    • 3
  1. 1.UMR 6554 LETG CNRS—Université de NantesNantesFrance
  2. 2.UMR 7204 CERSP Muséum National d’Histoire Naturelle—CNRS—P6ParisFrance
  3. 3.UMR 6553 Ecobio CNRS—Université de Rennes 1, Station BiologiquePaimpontFrance

Personalised recommendations