Polar Biology

, 34:1629 | Cite as

Antarctic terrestrial biodiversity in a changing world

  • Peter ConveyEmail author
Original Paper


Recent analyses of Antarctic terrestrial biodiversity data, in combination with molecular biological studies, have created a new paradigm that long-term persistence and regional isolation are general features of most of the major groups of Antarctic terrestrial biota, overturning the previously widely assumed view of a generally recent colonisation history. This paradigm, as well as incorporating a new and much longer timescale in which to consider the evolution and adaptation of Antarctic terrestrial biota, opens important new cross-disciplinary linkages with geologists and glaciologists seeking to unravel the history of the continent itself. This unique biota now faces the twin challenges of responding to the complex processes of climate change facing some parts of the continent, and the direct impacts associated with human occupation and activity. In many instances, this biota is likely to benefit, initially at least, from the current environmental changes, and there is an expectation of increased production, biomass, population size, community complexity, and colonisation. However, the impacts of climate change may themselves be outweighed by other, direct, impacts of human activities, and in particular, the introduction of non-indigenous organisms from which until recently the terrestrial ecosystems of the continent have been protected. The Antarctic research community and those responsible for governance under the Antarctic treaty system are faced with the pressing challenges of (1) ensuring there is sufficient baseline monitoring and survey activity to enable identification of these changes, however caused and (2) ensuring that effective operational management and biosecurity procedures are in place to minimise the threat from anthropogenic activities.


Biogeography Biological invasions Manipulation Human impacts Conservation Management 



I thank the organisers of the Fourth SCAR Open Science Conference, Buenos Aires, for the invitation to present this paper at the meeting and contribute to this Special Issue and the Editor and B.A. Ball and an anonymous reviewer for helpful and constructive suggestions. This paper is an output of the BAS ‘Polar Science for Planet Earth’ core science programme and also contributes to the SCAR EBA programme.


  1. Adams B, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol 29:320–326CrossRefGoogle Scholar
  3. Andrássy I (1998) Nematodes in the sixth continent. J Nematode Syst Morphol 1:107–186Google Scholar
  4. Anon (2009) Convention on biological diversity.
  5. Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Broos EJ, Parsons AN, Powers LE, Simmons BL, Virginia RA (2008) Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conservation Biol 22:1544–1551CrossRefGoogle Scholar
  6. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Commun 2:163. doi: 10.1038/ncomms1167 CrossRefGoogle Scholar
  7. Bargagli R (2005) Antarctic ecosystems. Environmental contamination, climate change, and human impact. Ecological studies 175. Springer, BerlinGoogle Scholar
  8. Barnes DK, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Global Ecol Biogeogr 15:121–142CrossRefGoogle Scholar
  9. Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008) Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biol 14:2249–2261CrossRefGoogle Scholar
  10. Bergstrom DM, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–476PubMedCrossRefGoogle Scholar
  11. Bergstrom DM, Convey P, Huiskes AHL (eds) (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, DordrechtGoogle Scholar
  12. Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J. Appl Ecol 46:73–81CrossRefGoogle Scholar
  13. Beyer L, Bölter M (2002) Geoecology of Antarctic ice free coastal landscapes. Springer, BerlinCrossRefGoogle Scholar
  14. Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 163–236Google Scholar
  15. Block W, Convey P (2001) Seasonal and long-term variation in body water content of an Antarctic springtail—a response to climate change? Polar Biol 24:764–770CrossRefGoogle Scholar
  16. Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environm Microbiol 72:5159–5164CrossRefGoogle Scholar
  17. Bokhorst S, Huiskes A, Convey P, Aerts R (2007a) The effect of environmental change on vascular plant and cryptogam communities along a latitudinal gradient from the Falkland Islands to the Maritime Antarctic. BMC Ecol 7:15. doi: 10.1186/1472-6785-7-15 PubMedCrossRefGoogle Scholar
  18. Bokhorst S, Huiskes A, Convey P, Aerts R (2007b) Climate change effects on decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biol 13:2642–2653CrossRefGoogle Scholar
  19. Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556CrossRefGoogle Scholar
  20. Bokhorst S, Huiskes A, Convey P, Sinclair BJ, Lebouvier M, van de Vijver B, Wall DH (in press) Passive warming methods in Antarctica: implications for microclimate and terrestrial biota. Polar BiolGoogle Scholar
  21. Bonner WN (1984) Introduced mammals. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 237–278Google Scholar
  22. Butler HG (1999) Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21:2393–2419CrossRefGoogle Scholar
  23. Campbell IB, Claridge GGC, Balks MR (1998) Short and long-term impacts of human disturbance on snow-free surfaces in Antarctica. Polar Record 34(188):15–24CrossRefGoogle Scholar
  24. Chapuis JL, Boussès P, Barnaud G (1994) Alien mammals, impact and management in the French subantarctic islands. Biol Conserv 67:97–104CrossRefGoogle Scholar
  25. Chapuis JL, Frenot Y, Lebouvier M (2004) Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biol Conserv 117:167–179CrossRefGoogle Scholar
  26. Chevrier M, Vernon P, Frenot Y (1997) Potential effects of two alien insects on a subantarctic wingless fly in the Kerguelen Islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431Google Scholar
  27. Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Phil Trans Roy Soc ser B 362:2307–2331CrossRefGoogle Scholar
  28. Chown SL, Convey P (in press) Spatial and temporal variability in terrestrial Antarctic biodiversity. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: an extreme environment in a changing world. Wiley-Blackwell, LondonGoogle Scholar
  29. Chown SL, Smith VR (1993) Climate change and the short-term impact of feral house mice at the sub-antarctic Prince Edward Islands. Oecologia 96:508–518CrossRefGoogle Scholar
  30. Clark MS, Peck LS (2009) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Marine Genomics 2:11–18PubMedCrossRefGoogle Scholar
  31. Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3PubMedCrossRefGoogle Scholar
  32. Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134Google Scholar
  33. Convey P (2001a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184Google Scholar
  34. Convey P (2001b) Terrestrial ecosystem response to climate changes in the Antarctic. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change—adapted behaviour and shifting species ranges. Kluwer, New York, pp 17–42Google Scholar
  35. Convey P (2003) Maritime Antarctic climate change: signals from terrestrial biology. In: Domack E, Burnett A, Leventer A, Convey P, Kirby M, Bindschadler R (eds) Antarctic Peninsula climate variability: historical and palaeoenvironmental perspectives. Antarctic research series, vol 79. American Geophysical Union, Washington, DC, pp 145–158CrossRefGoogle Scholar
  36. Convey P (2006) Antarctic climate change and its influences on terrestrial ecosystems. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272CrossRefGoogle Scholar
  37. Convey P (2007a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd (online) ed. Elsevier, San Diego. doi: 10.1016/B0-12-226865-2/00014-6
  38. Convey P (2007b) Influences on and origins of terrestrial biodiversity of the sub-Antarctic islands. Pap Proc Roy Soc Tasmania 141:83–93Google Scholar
  39. Convey P (2008) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica, Christchurch, pp 97–130Google Scholar
  40. Convey P (2010a) Terrestrial biodiversity in Antarctica—recent advances and future challenges. Polar Sci 4:135–147Google Scholar
  41. Convey P (2010b) Life history adaptations to polar and alpine environments. In: Denlinger DL, Lee RE Jr (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 297–321CrossRefGoogle Scholar
  42. Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc Roy Soc Tasmania 143:33–44Google Scholar
  43. Convey P, McInnes SJ (2005) Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica. Ecology 86:519–527CrossRefGoogle Scholar
  44. Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10Google Scholar
  45. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878PubMedCrossRefGoogle Scholar
  46. Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial environmental manipulation. Eur J Soil Biol 38:255–259CrossRefGoogle Scholar
  47. Convey P, Smith RIL, Peat HJ, Pugh PJA (2000) The terrestrial biota of Charcot Island, eastern Bellingshausen Sea, Antarctica an example of extreme isolation. Antarct Sci 12:406–413CrossRefGoogle Scholar
  48. Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial arthropods to long-term climate manipulations. Ecology 83:3130–3140CrossRefGoogle Scholar
  49. Convey P, Block W, Peat HJ (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biol 9:1718–1730CrossRefGoogle Scholar
  50. Convey P, Frenot F, Gremmen N, Bergstrom D (2006) Biological invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 193–220CrossRefGoogle Scholar
  51. Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  52. Convey P, Bindschadler RA, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski P, Summerhayes CP, Turner J (2009a) Antarctic climate change and the environment. Antarct Sci 21:541–563CrossRefGoogle Scholar
  53. Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009b) Exploring biological constraints on the glacial history of Antarctica. Quatern Sci Rev 28:3035–3048CrossRefGoogle Scholar
  54. Convey P, Key RS, Key RJD (2010) The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarct Sci 22:508–512CrossRefGoogle Scholar
  55. Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory carabid beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602CrossRefGoogle Scholar
  56. Convey P, Barnes DKA, Griffiths H, Grant S, Linse K, Thomas DN (in press) Biogeography and regional classifications of Antarctica. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: An extreme environment in a changing world. Wiley-Blackwell, LondonGoogle Scholar
  57. Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarctic dry valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436PubMedCrossRefGoogle Scholar
  58. Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent W (in press) Non-indigenous microorganisms in the Antarctic—assessing the risks. Trends MicrobiolGoogle Scholar
  59. Day TA (2001) Multiple trophic levels in UV-B assessments—completing the ecosystem. New Phytol 152:183–186CrossRefGoogle Scholar
  60. Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119:24–35CrossRefGoogle Scholar
  61. Day TA, Ruhland CT, Xiong F (2001) Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J Photochem Photobiol B: Biol 62:78–87CrossRefGoogle Scholar
  62. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc Roy Soc Lond Ser B. doi: 10.1098/rspb.2009.0994
  63. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520PubMedCrossRefGoogle Scholar
  64. Favero-Longo SE, Cannone N, Worland MR, Convey P, Piervittori R, Guglielmin M (2011) Changes in lichen vegetation with fur seal population increase on Signy Island (South Orkney Islands, Maritime Antarctic). Antarct Sci 23:65–77CrossRefGoogle Scholar
  65. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063PubMedCrossRefGoogle Scholar
  66. Fowbert JA, Smith RIL (1994) Rapid population increase in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alpine Res 26:290–296CrossRefGoogle Scholar
  67. Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369CrossRefGoogle Scholar
  68. Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergstrom D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  69. Frenot Y, Convey P, Lebouvier M, Chown SL, Whinam J, Selkirk PM, Skotnicki M, Bergstrom DM (2008) Antarctic biological invasions: sources, extents, impacts and implications. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic, proceedings. Gateway Antarctica, Christchurch, pp 53–96Google Scholar
  70. Gaston KJ, Jones AG, Hänel C, Chown SL (2003) Rates of species introduction to a remote oceanic island. Proc Roy Soc Lond ser B 270:1091–1098CrossRefGoogle Scholar
  71. Gerighausen U, Bräutigam K, Mustafa O, Peter H-U (2003) Expansion of vascular plants on an Antarctic island–a consequence of climate change? In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RMC, van der Vies SM, Wolff WS (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 79–83Google Scholar
  72. Grant S, Convey P, Hughes KA, Phillips RA, Trathan PN (in press) Conservation and management of Antarctic ecosystems. In: Rogers AD, Murphy E, Clarke A, Johnston NM (eds) Antarctica: an extreme environment in a changing world. Wiley-Blackwell, LondonGoogle Scholar
  73. Greenslade P (2006) The invertebrates of Macquarie Island. Australian Antarctic Division, KingstonGoogle Scholar
  74. Greenslade P (2010) South Shetlands Collembola fauna revisited. Antarct Sci 22:233–242CrossRefGoogle Scholar
  75. Gremmen N, Smith V (2004) The flora of Marion and Prince Edward Islands. Data Analyse Ecologie, DieverGoogle Scholar
  76. Gremmen NJM, Smith VR, van Tongeren OFR (2003) Impact of trampling on the vegetation of subantarctic Marion Island. Arct Antarct Alpine Res 35:442–446CrossRefGoogle Scholar
  77. Hänel C, Chown SL (1998) The impact of a small, alien macro-invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus Meigen (Diptera, Chironomidae) at Marion Island. Polar Biol 20:99–106CrossRefGoogle Scholar
  78. Hodgson DA, Johnston NM (1997) Inferring seal populations from lake sediments. Nature 387:30–31CrossRefGoogle Scholar
  79. Hodgson DA, Johnston NM, Caulkett AP, Jones VJ (1998) Palaeolimnology of Antarctic fur seal Arctocephalus gazella populations and implications for Antarctic management. Biol Conserv 83:145–154CrossRefGoogle Scholar
  80. Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Recent rapid salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406CrossRefGoogle Scholar
  81. Hogg ID, Cary SC, Convey P, Newsham K, O’Donnell T, Adams BJ, Aislabie J, Frati FF, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040CrossRefGoogle Scholar
  82. Hughes KA (2010) How committed are we to monitoring human impacts in Antarctica? Environ Res Lett 5:041002CrossRefGoogle Scholar
  83. Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob Environ Change Human Policy Dimens 20:96–112Google Scholar
  84. Hughes KA, Convey P (in review) Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica—current knowledge, methodology and management action. J Environ ManagGoogle Scholar
  85. Hughes KA, Worland MR (2010) Spatial distribution, habitat preference and colonisation status of two alien terrestrial invertebrate species in Antarctica. Antarct Sci 3:221–231CrossRefGoogle Scholar
  86. Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542PubMedGoogle Scholar
  87. Hughes KA, Walsh S, Convey P, Richards S, Bergstrom D (2005) Alien fly populations established at two Antarctic research stations. Polar Biol 28:568–570CrossRefGoogle Scholar
  88. Hughes KA, Ott S, Bölter M, Convey P (2006) Colonisation processes. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 35–54CrossRefGoogle Scholar
  89. Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891CrossRefGoogle Scholar
  90. Kaup E, Burgess JS (2002) Surface and subsurface flows of nutrients in natural and human impacted catchments on Broknes, Larsemann Hills, Antarctica. Antarct Sci 14:343–352CrossRefGoogle Scholar
  91. Kennedy AD (1994) Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17:131–140CrossRefGoogle Scholar
  92. Kennedy AD (1995a) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704CrossRefGoogle Scholar
  93. Kennedy AD (1995b) Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biol 1:29–42CrossRefGoogle Scholar
  94. Kennedy AD (1996) Antarctic fellfield response to climate change: a tripartite synthesis of experimental data. Oecologia 107:141–150CrossRefGoogle Scholar
  95. Kennicutt MC II, Klein A, Montagna P, Sweet S, Wade T, Palmer T, Sericano J, Denoux G (2010) Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ Res Lett 5:034010CrossRefGoogle Scholar
  96. Laparie M, Lebouvier M, Lalouette L, Renault D (2010) Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions. doi: 10.1007/s10530-010-9739-2
  97. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972PubMedCrossRefGoogle Scholar
  98. Leader-Williams N (1988) Reindeer on South Georgia: the ecology of an introduced population. Cambridge University Press, CambridgeGoogle Scholar
  99. Lee JE, Chown SL (2009a) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959PubMedCrossRefGoogle Scholar
  100. Lee JE, Chown SL (2009b) Quantifying the propagule load associated with the construction of an Antarctic research station. Antarct Sci 21:471–475CrossRefGoogle Scholar
  101. Lynch HJ, Crosbie K, Fagan WF, Naveen R (2010) Spatial patterns of tour ship traffic in the Antarctic Peninsula Region. Antarct Sci 22:123–130CrossRefGoogle Scholar
  102. Lyons WB, Laybourn-Parry J, Welch KA, Priscu JC (2006) Antarctic lake systems and climate change. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems, Antarctica as a global indicator. Springer, Dordrecht, pp 273–295CrossRefGoogle Scholar
  103. Marshall WA (1996) Biological particles over Antarctica. Nature 383:680CrossRefGoogle Scholar
  104. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151CrossRefGoogle Scholar
  105. McGaughran A, Toricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2010) Contrasting phylogeographic patterns for springtails reflect different evolutionary histories between the Peninsula and continental Antarctica. J Biogeog 37:103–119CrossRefGoogle Scholar
  106. McGraw JB, Day TA (1997) Size and characteristics of a natural seed bank in Antarctica. Arct Alpine Res 29:213–216CrossRefGoogle Scholar
  107. Mortimer E, Jansen van Vuuren B, Lee JE, Marshall DJ, Convey P, Daniels SR, Chown SL (2011) Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proc Roy Soc Lond Ser B doi: 10.1098/rspb.2010.1779
  108. Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biol 15:2574–2589CrossRefGoogle Scholar
  109. Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Smith RIL (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biol 8:972–983CrossRefGoogle Scholar
  110. Nielsen UN, Wall DH, Adams BJ, Virginia RA (2011) Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol. doi: 10.1007/s00300-011-1021-2
  111. Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos E, Porazinska DL, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352CrossRefGoogle Scholar
  112. Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  113. Ohtani S, Suvama K, Kanda H (2000) Environmental monitoring by means of soil algae and microorganisms in the vicinity of Syowa Station. Nankyoku Shiryo (Antarctic Record) 44:265–276Google Scholar
  114. Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  115. Parker BC, Simmons GM Jr, Wharton RA Jr, Seaburg KG, Love FG (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J Phycol 18:72–78CrossRefGoogle Scholar
  116. Parnikoza I, Convey P, Dykyy I, Trakhimets V, Milinevsky G, Tyschenko O, Inozemtseva D, Kozeretska I (2009) Current status of the Antarctic herb tundra formation in the central Argentine Islands. Global Change Biol 15:1685–1693CrossRefGoogle Scholar
  117. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157PubMedCrossRefGoogle Scholar
  118. Peat HJ, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeog 34:132–146CrossRefGoogle Scholar
  119. Peck LS, Clark MS, Clarke A, Cockell CS, Convey P, Detrich HW III, Fraser KPP, Johnston IA, Methe BA, Murray AE, Römisch K, Rogers AD (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365CrossRefGoogle Scholar
  120. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109PubMedCrossRefGoogle Scholar
  121. Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec 39:369–383CrossRefGoogle Scholar
  122. Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeog 35:2176–2186CrossRefGoogle Scholar
  123. Quayle WC, Convey P (2006) Concentration, molecular weight distribution and carbohydrate composition of DOC in maritime Antarctic lakes of differing trophic status. Aquatic Geochem 12:161–178CrossRefGoogle Scholar
  124. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645PubMedCrossRefGoogle Scholar
  125. Quayle WC, Convey P, Peck LS, Ellis-Evans JC, Butler HG, Peat HJ (2003) Ecological responses of maritime Antarctic lakes to regional climate change. In: Domack E, Burnett A, Leventer A, Convey P, Kirby M, Bindschadler R (eds) Antarctic Peninsula climate variability: historical and palaeoenvironmental perspectives. Antarctic research series, vol 79. American Geophysical Union, Washington, DC, pp 159–170CrossRefGoogle Scholar
  126. Quesada A, Vincent WF, Kaup E, Hobbie JE, Laurion I, Pienitz R, López-Martínez DuránJJ (2006) Landscape control of high latitude lakes in a changing climate. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Antarctica as a global indicator. Springer, Dordrecht, pp 221–252CrossRefGoogle Scholar
  127. Ruhland CT, Day TA (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environm Exp Bot 45:143–154CrossRefGoogle Scholar
  128. Scott JJ, Kirkpatrick JB (1994) Effects of human trampling on the sub-Antarctic vegetation of Macquarie Island. Polar Rec 30(174):207–220CrossRefGoogle Scholar
  129. Searles PS, Kropp BR, Flint SD, Caldwell MM (2001) Influence of solar UV-B radiation on peatland microbial communities of southern Argentina. New Phytol 152:213–221CrossRefGoogle Scholar
  130. Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060CrossRefGoogle Scholar
  131. Sinclair BJ (2002) Effects of increased temperatures simulating climate change on terrestrial invertebrates on Ross Island, Antarctica. Pedobiologia 46:150–160CrossRefGoogle Scholar
  132. Sjoling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650CrossRefGoogle Scholar
  133. Slabber S, Chown SL (2002) The first record of a terrestrial crustacean, Porcellio scaber (Isopoda, Porcellionidae), from sub-Antarctic Marion Island. Polar Biol 25:855–858Google Scholar
  134. Smith RIL (1984) Terrestrial biology of the Antarctic and sub-Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 61–162Google Scholar
  135. Smith RIL (1988) Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol Conserv 45:55–72CrossRefGoogle Scholar
  136. Smith RIL (1990) Signy island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems, ecological change and conservation. Springer, Berlin, pp 32–50Google Scholar
  137. Smith RIL (1993) The role of bryophyte propagule banks in primary succession: case study of an Antarctic fellfield soil. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, Oxford, pp 55–78Google Scholar
  138. Smith RIL (1994) Vascular plants as indicators of regional warming in Antarctica. Oecologia 99:322–328CrossRefGoogle Scholar
  139. Smith RIL (2001) Plant colonization response to climate change in the Antarctic. Folia Fac Sci Nat Univ Masarykianae Brunensis, Geographia 25:19–33Google Scholar
  140. Smith RIL, Richardson M (2011) Fuegian plants in Antarctica: natural or anthropogenically assisted immigrants? Biol Invasions. doi: 10.1007/s10530-010-9784-x
  141. Smith VR (2002) Climate change in the subantarctic: an illustration from Marion Island. Clim Change 52:345–357CrossRefGoogle Scholar
  142. Snell KRS, Kokubun T, Griffiths H, Convey P, Hodgson DA, Newsham KK (2009) Quantifying the metabolic cost to an Antarctic liverwort of responding to UV-B radiation exposure. Global Change Biol 15:2563–2573CrossRefGoogle Scholar
  143. Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, BerlinGoogle Scholar
  144. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Examining Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  145. Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID (2007) Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi, (Collembola, Isotomidae). Zool Scripta 36:201–212CrossRefGoogle Scholar
  146. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedCrossRefGoogle Scholar
  147. Tejedo P, Justel A, Benayas J, Rico E, Convey P, Quesada A (2009) Soil trampling in an Antarctic specially protected area: tools to assess levels of human impact. Antarct Sci 21:229–236CrossRefGoogle Scholar
  148. Tin T, Fleming Z, Hughes KA, Ainley D, Convey P, Moreno C, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment: a review. Antarct Sci 21:3–33CrossRefGoogle Scholar
  149. Trathan PN, Reid K (2009) Exploitation of the marine ecosystem in the sub-Antarctic: historical impacts and current consequences. Pap Proc Roy Soc Tasmania 143:9–14Google Scholar
  150. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds) (2009a) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, CambridgeGoogle Scholar
  151. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle TJ, Maksym T, Meredith MP, Wang Z, Orr A (2009b) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett. doi: 10.1029/2009GL037524
  152. Tweedie CE, Bergstrom DM (2000) A climate change scenario for surface air temperature at subantarctic Macquarie Island. In: Davison W, Howard-Williams C, Broady PA (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Christchurch, pp 272–281Google Scholar
  153. Vincent WF, MacIntyre S, Spigel RH, Laurion E (2008) The physical limnology of high-latitude lakes. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers—limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford, pp 65–81Google Scholar
  154. Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willem A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113CrossRefGoogle Scholar
  155. Wall DH, Lyons WB, Convey P, Howard-Williams C, Quesada A, Vincent WF (2011) Long term ecosystem networks to record change: an international imperative. Antarct Sci 23:209Google Scholar
  156. Walther G-R, Post E, Convey P, Parmesan C, Menzel M, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  157. Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 1–60Google Scholar
  158. Whinam J, Chilcott N, Bergstrom DM (2004) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219CrossRefGoogle Scholar
  159. Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188CrossRefGoogle Scholar
  160. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.British Antarctic SurveyCambridgeUK

Personalised recommendations