Polar Biology

, Volume 34, Issue 12, pp 1915–1928 | Cite as

Spatial and temporal variation of photosynthetic parameters in natural phytoplankton assemblages in the Beaufort Sea, Canadian Arctic

  • Molly A. Palmer
  • Kevin R. Arrigo
  • C. J. Mundy
  • Jens K. Ehn
  • Michel Gosselin
  • David G. Barber
  • Johannie Martin
  • Eva Alou
  • Suzanne Roy
  • Jean-Éric Tremblay
Original Paper


During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis–irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P m * ), photosynthetic efficiency (α *), photoacclimation (E k), and photoinhibition (β *). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in α * and P m * , showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 μm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow “shade-acclimated” range.


Phytoplankton Photosynthesis–irradiance measurements Subsurface chlorophyll maximum Beaufort Sea Polynya 



This work is a contribution to the International Polar Year Circumpolar Flaw Lead system study (IPY-CFL), supported through grants from the Canadian IPY Federal program office, the Natural Sciences and Engineering Research Council in Canada, and many international collaborators. Support was also provided by the National Science Foundation (grant ANT07325535 to K.R. Arrigo) and NASA (grant NNX09AO48H to K.R. Arrigo and M.A. Palmer). We would like to thank all our international collaborators as well as SCUBA divers J. Stewart and H. Hop; E. Shadwick and H. Thomas for dissolved inorganic carbon data; C. Bourgault-Brunelle for helping process the absorption spectra; Y. Gratton and his team for processing and distributing the CTD data; A. Rossnagel, B. Philippe, A. Sallon, and M. Ardyna for laboratory and field assistance; D. Leitch and the officers and crew of the CCGS Amundsen for logistical support; and the Arrigo laboratory and three anonymous reviewers for comments.


  1. Arrigo KR, van Dijken GL (2004) Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophys Res Lett 31:L08304. doi: 10.1029/2003GL018978 CrossRefGoogle Scholar
  2. Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking ice cover on marine primary production. Geophys Res Lett 35:L19603. doi: 10.1029/2008GL035028 CrossRefGoogle Scholar
  3. Arrigo KR, Mills MM, Kropuenske LR, van Dijken GL, Alderkamp AC, Robinson DH (2010) Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels. Integr Comp Biol 50:950–966. doi: 10.1093/icb/icq021 PubMedCrossRefGoogle Scholar
  4. Barber DG, Hanesiak JM (2004) Meteorological forcing of sea ice concentrations in the southern Beaufort Sea over the period 1979 to 2000. J Geophys Res 109:C06014. doi: 10.1029/2003JC002027 CrossRefGoogle Scholar
  5. Barber DG, Massom R (2007) The role of sea ice in Arctic and Antarctic Polynyas. In: Smith WO, Barber DG (eds) Polynyas: windows to the world. Elsevier Oceanogr Ser 74. Elsevier, Amsterdam, pp 1–43Google Scholar
  6. Barber DG, Asplin M, Gratton Y, Lukovich J, Galley R, Raddatz R, Leitch D (2010) The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: introduction and physical system. Atmosphere Ocean 48:225–243Google Scholar
  7. Brugel S (2009) Étude des variations spatiales et temporelles du phytoplancton en mer de Beaufort: biomasse, production et structure de taille des communautés. Dissertation, Université du Québec à RimouskiGoogle Scholar
  8. Brugel S, Nozais C, Poulin M, Tremblay J-É, Miller LA, Simpson KG, Gratton Y, Demers S (2009) Phytoplankton biomass and production in the southeastern Beaufort Sea in autumn 2002 and 2003. Mar Ecol Prog Ser 377:63–77. doi: 10.3354/meps07808 CrossRefGoogle Scholar
  9. Carmack E, Chapman DC (2003) Wind-driven shelf/basin exchange on an Arctic shelf: the joint roles of ice cover extent and shelf-break bathymetry. Geophys Res Lett 30:1778. doi: 10.1029/2003GL017526 CrossRefGoogle Scholar
  10. Carmack EC, Macdonald RW (2002) Oceanography of the Canadian Shelf of the Beaufort Sea: a setting for marine life. Arctic 55:29–45Google Scholar
  11. Carmack EC, Macdonald RW, Jasper S (2004) Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea. Mar Ecol Prog Ser 277:37–50. doi: 10.3354/meps277037 CrossRefGoogle Scholar
  12. Cavalieri DJ, Martin S (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J Geophys Res 99:18343–18362. doi: 10.1029/94JC01169 CrossRefGoogle Scholar
  13. Cota GF (1985) Photoadaptation of high Arctic ice algae. Nature 315:219–222. doi: 10.1038/315219a0 CrossRefGoogle Scholar
  14. Falkowski PG (1980) Light-shade adaptation in marine phytoplankton. In: Falkowski PG (ed) Primary productivity in the sea. Plenum, New York, pp 99–117Google Scholar
  15. Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14. doi: 10.1111/j.0022-3646.1991.00008.x CrossRefGoogle Scholar
  16. Gallegos CL, Platt T, Harrison WG, Irwin B (1983) Photosynthetic parameters of arctic marine phytoplankton: vertical variations and time scales of adaptation. Limnol Oceanogr 28:698–708CrossRefGoogle Scholar
  17. Harrison WG, Platt T (1986) Photosynthesis–irradiance relationships in polar and temperate phytoplankton populations. Polar Biol 5:153–164. doi: 10.1007/BF00441695 CrossRefGoogle Scholar
  18. Hill V, Cota G (2005) Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002. Deep Sea Res Part II 52:3344–3354. doi: 10.1016/j.dsr2.2005.10.001
  19. Jeffery SW (1997) Chlorophyll and carotenoid extinction coefficients. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO Publishing, Paris, pp 595–596Google Scholar
  20. Johnson KM, Wills KD, Butler DB, Johnson WK, Wong CS (1993) Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. Mar Chem 44:167–187. doi: 10.1016/0304-4203(93)90201-X CrossRefGoogle Scholar
  21. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199. doi: 10.1111/j.0022-3646.1995.00181.x CrossRefGoogle Scholar
  23. Kishino M, Takahashi N, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642Google Scholar
  24. Kropuenske LR, Mills MM, van Dijken GL, Bailey S, Robinson DH, Welschmeyer NA, Arrigo KR (2009) Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol Oceanogr 54:1176–1196. doi: 10.4319/lo.2009.54.4.1176 CrossRefGoogle Scholar
  25. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi: 10.1126/science.1179798 PubMedCrossRefGoogle Scholar
  26. Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau M-J, Terrado R, Potvin M, Massana R, Pedrós-Alió C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J Phycol 43:78–89. doi: 10.1111/j.1529-8817.2006.00310.x CrossRefGoogle Scholar
  27. MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38. doi: 10.1046/j.1529-8817.2002.00094.x CrossRefGoogle Scholar
  28. Martin J, Tremblay J-È, Gagnon J, Tremblay G, Lapoussière A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69–84. doi: 10.3354/meps08666 CrossRefGoogle Scholar
  29. Matsuoka A, Larouche P, Poulin M, Vincent W, Hattori H (2009) Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea, Canadian Arctic. Estuar Coast Shelf Sci 82:537–546. doi: 10.1016/j.ecss.2009.02.024
  30. McLaughlin FA, Carmack EC (2010) Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophys Res Lett 37:L24602. doi: 10.1029/2010GL045459 CrossRefGoogle Scholar
  31. Melling H, Moore RM (1995) Modification of halocline source waters during freezing on the Beaufort Sea shelf: evidence from oxygen isotopes and dissolved nutrients. Cont Shelf Res 15:89–113. doi: 10.1016/0278-4343(94)P1814-R Google Scholar
  32. Mitchell BG, Kahru M, Wieland J, Stramska M (2003) Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain CR (eds) Ocean optics protocols for satellite ocean color sensor validation, rev 4, vol IV, NASA Technical Memo 2003–211621. NASA Goddard Space Flight Center, Greenbelt, pp 39–64Google Scholar
  33. Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res 28:1375–1393. doi: 10.1016/0198-0149(81)90039-X CrossRefGoogle Scholar
  34. Mundy CJ, Gosselin M, Ehn JK, Gratton Y, Rossnagel AL, Barber DG, Martin J, Tremblay J-È, Palmer M, Arrigo K, Darnis G, Fortier L, Else B, Papakyriakou TN (2009) Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys Res Lett 36:L17601. doi: 10.1029/2009GL038837 CrossRefGoogle Scholar
  35. Mundy CJ, Gosselin M, Ehn JK, Belzile C, Poulin M, Alou E, Roy S, Hop H, Lessard S, Papakyriakou TN, Barber DG, Stewart J (this issue) Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol submittedGoogle Scholar
  36. Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998–2006. J Geophys Res 113:C08005. doi: 10.1029/2007JC004578 CrossRefGoogle Scholar
  37. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  38. Platt T, Harrison WG, Irwin B, Horne EP, Gallegos CL (1982) Photosynthesis and photoadaptation of marine phytoplankton in the Arctic. Deep Sea Res 29:1159–1170. doi: 10.1016/0198-0149(82)90087-5
  39. Robinson DH, Arrigo KR, DiTullio GR, Lizotte MP (2003) Evaluating photosynthetic carbon fixation during Phaeocystis antarctica blooms. In: DiTullio GR, Dunbar RB (eds) Biogeochemistry of the Ross Sea. Antarctic Research Series 78, pp 77–91Google Scholar
  40. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. Eos Trans AGU 89:13–14. doi: 10.1029/2008EO020001 CrossRefGoogle Scholar
  41. Sukenic A, Bennett J, Falkowski P (1987) Light-saturated photosynthesis—limitation by electron transport or carbon fixation? Biochim Biophys Acta 891:205–215. doi: 10.1016/0005-2728(87)90216-7 CrossRefGoogle Scholar
  42. Tassan S, Ferrari GM (1995) An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol Oceanogr 40:1358–1368. doi: 10.4319/lo.1995.40.8.1358 CrossRefGoogle Scholar
  43. Tassan S, Ferrari GM (1998) Measurement of light absorption by aquatic particulates retained on filters: determination of the optical pathlength amplification by the ‘transmittance–reflectance’ method. J Plankton Res 20:1699–1709. doi: 10.1093/plankt/20.9.1699 CrossRefGoogle Scholar
  44. Tassan S, Ferrari GM (2002) A sensitivity analysis of the ‘Transmittance–Reflectance’ method for measuring light absorption by aquatic particles. J Plankton Res 24:757–774. doi: 10.1093/plankt/24.8.757 CrossRefGoogle Scholar
  45. Tremblay J-É, Simpson K, Martin J, Miller L, Gratton Y, Barber D, Price NM (2008) Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J Geophys Res 113:C07S90. doi: 10.1029/2007JC004547
  46. Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay J-É (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70. doi: 10.3354/ame01257 CrossRefGoogle Scholar
  47. Vidussi F, Roy S, Lovejoy C, Gammelgaard M, Thomsen HA, Booth B, Tremblay J-E, Mostajir B (2004) Spatial and temporal variability of the phytoplankton community structure in the North Water Polynya, investigated using pigment biomarkers. Can J Fish Aquat Sci 61:2038–2052. doi: 10.1139/f04-152 CrossRefGoogle Scholar
  48. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi: 10.1029/2009GL037820 CrossRefGoogle Scholar
  49. Wang J, Cota GF, Comiso JC (2005) Phytoplankton in the Beaufort and Chukchi Seas: distribution, dynamics, and environmental forcing. Deep Sea Res Part II 52:3355–3368. doi: 10.1016/j.dsr2.2005.10.014
  50. Yang J, Comiso JC, Walsh D, Krishfield R, Honjo S (2004) Storm-driven mixing and potential impact on the Arctic Ocean. J Geophys Res 109:C04008. doi: 10.1029/2001JC001248 CrossRefGoogle Scholar
  51. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45. doi: 10.3354/meps195029 CrossRefGoogle Scholar
  52. Zhang J, Spitz YH, Steele M, Ashjian C, Campbell R, Berline L, Matrai M (2010) Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J Geophys Res 115:C10015. doi: 10.1029/2009JC005387

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Molly A. Palmer
    • 1
  • Kevin R. Arrigo
    • 1
  • C. J. Mundy
    • 2
  • Jens K. Ehn
    • 3
  • Michel Gosselin
    • 2
  • David G. Barber
    • 4
  • Johannie Martin
    • 5
  • Eva Alou
    • 2
  • Suzanne Roy
    • 2
  • Jean-Éric Tremblay
    • 5
  1. 1.Department of Environmental Earth System ScienceStanford UniversityStanfordUSA
  2. 2.Institut des sciences de la merUniversité du Québec à RimouskiRimouskiCanada
  3. 3.Marine Physical Laboratory, Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaUSA
  4. 4.Centre for Earth Observation Science, Faculty of Environment, Earth and ResourcesUniversity of ManitobaWinnipegCanada
  5. 5.Québec-Océan, Département de biologieUniversité LavalQuébecCanada

Personalised recommendations