Polar Biology

, Volume 34, Issue 11, pp 1701–1711 | Cite as

Antarctic nematode communities: observed and predicted responses to climate change

  • Uffe N. Nielsen
  • Diana H. Wall
  • Byron J. Adams
  • Ross A. Virginia
Original Paper

Abstract

The rapidly changing climate in Antarctica is impacting the ecosystems. Since records began, climate changes have varied considerably throughout Antarctica with both positive and negative trends in temperatures and precipitation observed locally. However, over the course of this century a more directional increase in both temperature and precipitation is expected to occur throughout Antarctica. The soil communities of Antarctica are considered simple with most organisms existing at the edge of their physiological capabilities. Therefore, Antarctic soil communities are expected to be particularly sensitive to climate changes. However, a review of the current literature reveals that studies investigating the impact of climate change on soil communities, and in particular nematode communities, in Antarctica are very limited. Of the few studies focusing on Antarctic nematode communities, long-term monitoring has shown that nematode communities respond to changes in local climate trends as well as extreme (or pulse) events. These results are supported by in situ experiments, which show that nematode communities respond to both temperature and soil moisture manipulations. We conclude that the predicted climate changes are likely to exert a strong influence on nematode communities throughout Antarctica and will generally lead to increasing abundance, species richness, and food web complexity, although the opposite may occur locally. The degree to which local communities respond will depend on current conditions, i.e., average temperatures, soil moisture availability, vegetation or more importantly the lack thereof, and the local species pool in combination with the potential for new species to colonize.

Keywords

Antarctica Climate change Community composition Diversity Nematode Precipitation Soil Temperature 

References

  1. Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Adhikari BN, Wall DH, Adams BJ (2009) Desiccation survival in an Antarctic nematode: molecular analysis using expressed sequenced tags. BMC Genomics 10:69. doi:10.1186/1471-2164-10-69 PubMedCrossRefGoogle Scholar
  3. Adhikari BN, Wall DH, Adams BJ (2010) Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. J Exp Biol 213:1803–1812PubMedCrossRefGoogle Scholar
  4. Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186Google Scholar
  5. Andrássy I (2008) On the male of the Antarctic nematode species, Plectus murrayi Yeates, 1970. J Nematode Morphol Syst 11:87–89Google Scholar
  6. Andrássy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. n. Polar Biol 30:669–678CrossRefGoogle Scholar
  7. Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG (2010) Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol 33:897–907CrossRefGoogle Scholar
  8. Barrett JE, Virginia RA, Wall DH, Cary SS, Adams BJ, Hacker AL, Aislabie JM (2006) Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct Sci 18:535–548CrossRefGoogle Scholar
  9. Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008a) Persistent effects of a discrete climate event on a polar desert ecosystem. Glob Change Biol 14:2249–2261CrossRefGoogle Scholar
  10. Barrett JE, Virginia RA, Wall DH, Adams BJ (2008b) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity ecosystem. Glob Change Biol 14:1734–1744CrossRefGoogle Scholar
  11. Bergström DM, Chown SL (1999) Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–477PubMedCrossRefGoogle Scholar
  12. Bertler NAN, Barrett PJ, Mayewski PA, Fogt RL, Kreutz KJ, Shulmeister J (2004) El Nino suppresses Antarctic warming. Geophys Res Lett 31(15):L15207CrossRefGoogle Scholar
  13. Block W, Smith RIL, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484PubMedCrossRefGoogle Scholar
  14. Bölter M, Blume H-P, Schneider D, Beyer L (1997) Soil properties and distribution of invertebrates and bacteria from King George Island (Arctowski Station), maritime Antarctic. Polar Biol 18:295–304CrossRefGoogle Scholar
  15. Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res 133:D03103. doi:10.1029/2007JD008933 CrossRefGoogle Scholar
  16. Brown IM, Wharton DA, Millar RB (2004) The influence of temperature on the life history of the Antarctic nematode Panagrolaimus davidi. Nematology 6:883–890CrossRefGoogle Scholar
  17. Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391CrossRefGoogle Scholar
  18. Caldwell JR (1981) The Signy Island terrestrial reference sites: XIII. Population dynamics of the nematode fauna. Brit Antarct Surv B 54:33–46Google Scholar
  19. Chapin FS III, Grens K, Katsnelson A, Gawrylewski A, Zielinska E, Scheff J (2008) Climate change and the biosphere. Scientist 22:36–42Google Scholar
  20. Convey P (2003a) Maritime Antarctic climate change: signals from terrestrial biology. Antarct Res Ser 76:335–347Google Scholar
  21. Convey P (2003b) Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, the Netherlands, pp 74–78Google Scholar
  22. Convey P (2006) Antarctic climate change and its influence on terrestrial ecosystems. In: Bergström DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 253–272CrossRefGoogle Scholar
  23. Convey P (2008a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Academic Press, San DiegoGoogle Scholar
  24. Convey P (2008b) Non-native species in Antarctic terrestrial and freshwater environments: presence, sources, impacts and predictions. In: Rogan-Finnemore M (ed) Non-native species in the Antarctic proceedings. Gateway Antarctica, Christchurch, pp 97–130Google Scholar
  25. Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10Google Scholar
  26. Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol 38:255–259CrossRefGoogle Scholar
  27. Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  28. Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17CrossRefGoogle Scholar
  29. Crowe JH, Hoekstra F, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  30. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520PubMedCrossRefGoogle Scholar
  31. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystem: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94CrossRefGoogle Scholar
  32. Elberling B, Gregorich EG, Hopkins DW, Sparrow AD, Novis P, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol Biochem 38:3095–3106CrossRefGoogle Scholar
  33. Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971CrossRefGoogle Scholar
  34. Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine islands, Antarctic Peninsula. Arctic Alpine Res 26:290–296CrossRefGoogle Scholar
  35. Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369CrossRefGoogle Scholar
  36. Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergström D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72PubMedCrossRefGoogle Scholar
  37. Gooseff MN, Barrett JE, Doran PT, Fountain AG, Lyons WB, Parsons AN, Porazinska DL, Virginia RA, Wall DH (2003) Snowpack influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 35:91–99CrossRefGoogle Scholar
  38. Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Rapid recent salinity rise in three East Antarctic lakes. J Paleolimnol 36:385–406CrossRefGoogle Scholar
  39. Hogg ID, Cary SC, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040CrossRefGoogle Scholar
  40. Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491PubMedCrossRefGoogle Scholar
  41. Huiskes A, Convey P, Bergström DM (2006) Trends in Antarctic terrestrial and limnetic ecosystems. In: Bergström DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 1–13CrossRefGoogle Scholar
  42. IPCC (2007) Climate change 2007: working group I: the physical science basis. IPCC, GenevaGoogle Scholar
  43. Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704CrossRefGoogle Scholar
  44. Kito K, Ohyama Y (2008) Rhabditid nematodes found from a rocky coast contaminated with treated waste water of Casey Station in East Antarctica, with a description of a new species of Dolichorhabditis Andrássy, 1983 (Nematoda: Rhabditidae). Zootaxa 1850:43–52Google Scholar
  45. Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L (2007) Simulated precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dynam 28:215–230CrossRefGoogle Scholar
  46. Lewis Smith RI, Ochyra R (2006) High altitude Antarctic soil propagule bank yields an exotic moss and potential colonist. J Hattori Bot Lab 100:325–331Google Scholar
  47. Lyons WB, Welch KA, Carey AE, Doran PT, Wall DH, Virginia RA, Fountain AG, Csatho BM, Tremper CM (2005) Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Ann Glaciol 40:200–206CrossRefGoogle Scholar
  48. Marion GM, Henry GHR, Freckman DW, Jones G, Jones MH, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32CrossRefGoogle Scholar
  49. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151CrossRefGoogle Scholar
  50. McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobio S 6:218–231CrossRefGoogle Scholar
  51. Nielsen UN, Wall DH, Li G, Toro M, Adams BJ, Virginia RA (2011) Nematode communities of Byers Peninsula, Livingston Island, maritime Antarctica. Antarct Sci. doi:10.1017/S0954102011000174
  52. Ochyra R, Bednarek-Ochyra H, Smith RIL (2008) New and rare moss species from the Antarctic. Nova Hedwigia 87:457–477CrossRefGoogle Scholar
  53. Overhoff A, Freckman DW, Virginia RA (1993) Life cycle of the microbivorous Antarctic Dry Valley nematode Scottnema lindsayae (Timm 1971). Polar Biol 13:151–156CrossRefGoogle Scholar
  54. Øvstedal DO, Smith RIL (2009) Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia 88:157–168CrossRefGoogle Scholar
  55. Parnikoza I, Convey P, Dykyy I, Trokhymets V, Milinevsky G, Tyschenko O, Inozemtseva D, Kozeretske I (2009) Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biol 15:1685–1693CrossRefGoogle Scholar
  56. Poage MA, Barrett JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 40:119–128CrossRefGoogle Scholar
  57. Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574Google Scholar
  58. Powers LE, Ho M, Freckman DW, Virginia RA (1998) Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic Alpine Res 30:133–141CrossRefGoogle Scholar
  59. Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186CrossRefGoogle Scholar
  60. Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060CrossRefGoogle Scholar
  61. Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400CrossRefGoogle Scholar
  62. Sinclair BJ, Sjursen H (2001) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia 45:134–145CrossRefGoogle Scholar
  63. Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170CrossRefGoogle Scholar
  64. Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, LondonGoogle Scholar
  65. Smith RIL (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328CrossRefGoogle Scholar
  66. Sohlenius B, Boström S (2005) The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biol 28:439–448CrossRefGoogle Scholar
  67. Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825CrossRefGoogle Scholar
  68. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 457:459–463PubMedCrossRefGoogle Scholar
  69. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedCrossRefGoogle Scholar
  70. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  71. Tebaldi C, Smith RL, Nychka D, Mearns LO (2006) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Climate 18:1524–1540CrossRefGoogle Scholar
  72. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899PubMedCrossRefGoogle Scholar
  73. Treonis AM, Wall DH (2005) Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic dry valleys. Integr Comp Biol 45:741–750PubMedCrossRefGoogle Scholar
  74. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294CrossRefGoogle Scholar
  75. Turner J, Bindschadler R, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP (2009) Antarctic climate change and the environment. Scientific Committee for Antarctic Research, CambridgeGoogle Scholar
  76. Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8CrossRefGoogle Scholar
  77. Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531CrossRefGoogle Scholar
  78. Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B 362:2291–2306CrossRefGoogle Scholar
  79. Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150CrossRefGoogle Scholar
  80. Wall DH, Lyons WB, Chown SL, Convey P, Howard-Williams C, Quesada A, Vincent WF (in press) Long term ecosystem networks to record change: an international imperative. Antarct SciGoogle Scholar
  81. Weiler CS, Penhale PA (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic research series volume 62. American Geophysical Union, WashingtonCrossRefGoogle Scholar
  82. Wharton DA, Barclay S (1993) Anhydrobiosis in the free-living Antarctic nematode Panagrolaimus davidi (Nematoda, Rhabditida). Fund Appl Nematol 16:17–22Google Scholar
  83. Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387PubMedGoogle Scholar
  84. Wright JC, Westh P, Ramløv H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29CrossRefGoogle Scholar
  85. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Uffe N. Nielsen
    • 1
  • Diana H. Wall
    • 1
  • Byron J. Adams
    • 2
  • Ross A. Virginia
    • 3
  1. 1.Department of Biology and Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.Department of Biology and Evolutionary Ecology LaboratoriesBrigham Young UniversityProvoUSA
  3. 3.Environmental Studies ProgramDartmouth CollegeHanoverUSA

Personalised recommendations