Advertisement

Polar Biology

, Volume 34, Issue 8, pp 1211–1220 | Cite as

High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica

  • T. G. A. GreenEmail author
  • L. G. Sancho
  • R. Türk
  • R. D. Seppelt
  • I. D. Hogg
Original Paper

Abstract

Investigations of lichens collected in 1959/1960, 1963/1964 and 2003 from near the Beardmore Glacier in the southern Ross Sea region (84°S) have more than doubled the number of known lichen species in the area to around 30. The ranges of 15 species have been extended to 84°S. A lichen diversity hotspot has also been found along Ebony Ridge and its associated peaks where 28 of the species occur, a number equivalent to more northerly sites in the Ross Sea (e.g. Botany Bay 77°S). Furthermore, 6 species had been previously recorded only from the Antarctic Peninsula region. In agreement with previous studies on mites and springtails from the same area, we suggest that these populations represent relicts that predate the present Ross Ice Shelf extension, with a possible age of 2,000,000 years or older.

Keywords

Relict Collembola Beardmore Glacier Mosses Diversity Lichens 

Notes

Acknowledgments

We are grateful to Antarctica New Zealand (AntNZ) for logistical support enabling sample collection in 2003 as part of the Latitudinal Gradient Project coordinated by Shulamit Gordon. The New Zealand Foundation for Research, Science and Technology (FRST), the University of Waikato Vice Chancellor’s Fund, and the Department of Biological Sciences, University of Waikato provided financial support. During completion of the research, TGAG and IDH were supported by the FRST grant, understanding, valuing and protecting Antarctica’s unique terrestrial ecosystems: predicting biocomplexity in Dry Valley ecosystems, and TGAG and LGS by the Spanish Education Ministry grants POL2006-08405 and CTM2009- 12838-C04-01. Ulrike Ruprecht is thanked for assistance in identifying Lecidea species. Barbara Polly at the Domininion Museum, Wellington, is particularly thanked for excellent curation of the Antarctic samples and for drawing our attention to the collections. Catherine Beard is thanked for drawing Figure 2b.

References

  1. Benedict JB (1990) Lichen mortality due to late-lying snow: results of a transplant study. Arct Alp Res 22:81–89CrossRefGoogle Scholar
  2. Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10:376–385CrossRefGoogle Scholar
  3. Cannone N (2006) A network for monitoring terrestrial ecosystems along a latitudinal gradient in Continental Antarctica. Antarct Sci 18:549–560CrossRefGoogle Scholar
  4. Cannone N, Guglielmin M (2010) Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. Antarct Sci 22:703–713CrossRefGoogle Scholar
  5. Cannone N, Seppelt RD (2008) A preliminary floristic classification of southern and northern Victoria Land vegetation, continental Antarctica. Antarct Sci 20:553–562CrossRefGoogle Scholar
  6. Castello M (2003) Lichens of the Terra Nova Bay area, Northern Victoria Land. Studia Geobotanica 22:3–59Google Scholar
  7. Castello M, Nimis PL (1995) The lichen vegetation of Terra Nova Bay (Victoria Land, continental Antarctica). Bibl Lichenol 58:43–55Google Scholar
  8. Castello M, Nimis PL (2000) A key to the lichens of Terra Nova Bay (Victoria Land, continental Antarctica). Ital J Zool 67:175–184CrossRefGoogle Scholar
  9. Cawley RW (1960) New Zealand Alpine Club Antarctic expedition, 1959–60. NZ Alp J 19:253–260Google Scholar
  10. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878PubMedCrossRefGoogle Scholar
  11. Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117PubMedCrossRefGoogle Scholar
  12. Demetras NJ, Hogg ID, Banks JC, Adams BJ (2010) Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: Prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarct Sci 22:749–756CrossRefGoogle Scholar
  13. Hawes I, Torricelli G, Stevens MI (2010) Haplotype diversity in the Antarctic springtail Gressittacantha terranova at fine spatial scales—a Holocene twist to a Pliocene tale. Antarct Sci 22:766–773CrossRefGoogle Scholar
  14. Howard-Williams C, Peterson D, Lyons WB, Cattoneo-Vietti R, Gordon S (2006) Measuring ecosystem response in a rapidly changing environment: the Latitudinal Gradient Project. Antarct Sci 18:465–471CrossRefGoogle Scholar
  15. Howard-Williams C, Hawes I, Gordon S (2010) The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project. Antarct Sci 22:591–602CrossRefGoogle Scholar
  16. Körner C (1999) Alpine plant life. Springer, BerlinGoogle Scholar
  17. Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, DeConto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–329PubMedCrossRefGoogle Scholar
  18. Nolan L, Hogg ID, Stevens MI, Haase M (2006) Fine scale distribution of mtDNA haplotypes for the springtail Gomphiocephalus hodgsoni (Collembola) corresponds to an ancient shoreline in Taylor Valley, continental Antarctica. Polar Biol 29:813–819CrossRefGoogle Scholar
  19. Ochyra R, Smith RIL, Bednarek-Ochyra H (2005) The illustrated moss flora of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  20. Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge University Press, CambridgeGoogle Scholar
  21. Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38PubMedGoogle Scholar
  22. Peat H, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeogr 34:132–146CrossRefGoogle Scholar
  23. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–333PubMedCrossRefGoogle Scholar
  24. Pomeroy J, Brun E (2001) Physical properties of snow. In: Jones HG, Pomeroy J, Walker DA, Hoham R (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 45–127Google Scholar
  25. Ruprecht U, Lumbsch H, Brunauer G, Green TGA, Türk R (2010) Molecular data reveal unexpected diversity of Lecidea (Lecideaceae, Ascomycota) species in continental Antarctica (Ross Sea Region) corroborated by previously overlooked morphological characters. Antarct Sci 22:727–741CrossRefGoogle Scholar
  26. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:23–30Google Scholar
  27. Seppelt RD, Türk R, Green TGA, Moser G, Pannewitz LG, Sancho LG, Schroeter B (2010) Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarct Sci 22:691–702CrossRefGoogle Scholar
  28. Singh SM, Nayaka S, Upreti DK (2007) Lichen communities in Larsemann Hills, East Antarctica. Curr Sci 93:1670–1672Google Scholar
  29. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion revealed for the endemic springtail Gomphiocephalus hodgsoni from southern Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedCrossRefGoogle Scholar
  30. Stevens M, Greenslade P, Hogg ID, Sunnucks P (2006) Southern Hemisphere Springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  31. Storey BC, Fink D, Hood D, Joy K, Shulmeister J, Riger-Kusk M, Stevens MI (2010) Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarct Sci 22:603–618CrossRefGoogle Scholar
  32. Strandtmann RW (1967) Terrestrial Prostigmata (Trombidiform Mites). Antarct Res Ser 10:51–80Google Scholar
  33. Torricelli G, Frati F, Convey P, Telford M, Carapelli A (2010) Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarct Sci 22:757–765CrossRefGoogle Scholar
  34. Tyndale-Biscoe CH (1960a) The southern party. NZ Alp J 19:260–268Google Scholar
  35. Tyndale-Biscoe CH (1960b) On the occurrence of life near the Beardmore Glacier, Antarctica. Pac Insects 2:251–253Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. G. A. Green
    • 1
    • 2
    Email author
  • L. G. Sancho
    • 1
  • R. Türk
    • 3
  • R. D. Seppelt
    • 4
  • I. D. Hogg
    • 2
  1. 1.Departamento de Biologia Vegetal II, Facultad de FarmaciaUniversidad ComplutenseMadridSpain
  2. 2.Department of Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  3. 3.Fachbereich Organismische BiologieUniversität SalzburgSalzburgAustria
  4. 4.Australian Antarctic DivisionKingstonAustralia

Personalised recommendations