Polar Biology

, Volume 34, Issue 2, pp 291–302 | Cite as

A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean

  • Toru Hirawake
  • Shintaro Takao
  • Naho Horimoto
  • Takashi Ishimaru
  • Yukuya Yamaguchi
  • Mitsuo Fukuchi
Original Paper


Recent global environmental changes such as an increase in sea surface temperature (SST) are likely to impact primary productivity of phytoplankton in the Southern Ocean. However, models to estimate net primary production using satellite data use SST and uncertain estimation of chlorophyll a (chl-a) concentration. A primary productivity model for satellite ocean color data from the Southern Ocean, which is based on the light absorption coefficient of phytoplankton to reduce uncertainties of sea surface chl-a estimations and bias in optimal values of chl-a normalized productivity derived from SST, has been developed. The new model was able to estimate net primary productivity in the water column (PPeu) without dependency on temperature when in the range of −2 to 25°C, and it explained 51% of the observed variability in PPeu with a root mean square error (RMSE) of 0.15. Application of the model revealed that the SST dependent model has overestimated PPeu in warmer waters around the Subtropical Front, and underestimated PPeu in colder waters poleward of the Sub-Antarctic Front. This absorption-based primary productivity model contributes to a study of the relationship among spatio-temporal variations in the physical environment, and biogeochemical cycles in the Southern Ocean.


Light absorption coefficient Sea surface temperature Southern Ocean Ocean color remote sensing Primary production 


  1. Alvain S, Moulin C, Dandonneau Y, Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res 52:1989–2004CrossRefGoogle Scholar
  2. Aoki S, Rintoul SR, Hasumoto H, Kinoshita H (2006) Frontal positions and mixed layer evolution in the Seasonal Ice Zone along 140°E in 2001/02. Polar Biosci 20:1–20Google Scholar
  3. Arrigo KR, van Dijken GL (2004) Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Res II 51:117–138CrossRefGoogle Scholar
  4. Austin RW (1974) The remote sensing of spectral radiance from below the ocean surface. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography. Academic Press, New York, pp 317–344Google Scholar
  5. Behrenfeld MJ, Falkowski PG (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  6. Behrenfeld MJ, Falkowski PG (1997b) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42:1479–1491CrossRefGoogle Scholar
  7. Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’Olmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeoscience 6:779–794CrossRefGoogle Scholar
  8. Bricaud A, Morel A, Babin M, Allali K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J Geophys Res 103:31033–31044CrossRefGoogle Scholar
  9. Dierssen HM, Vernet M, Smith RC (2000) Optimizing models for remotely estimating primary production in Antarctic coastal waters. Antarct Sci 12:20–32CrossRefGoogle Scholar
  10. Gordon HR, Clark DK, Brown JW, Brown OB, Evans RH, Broenkow WW (1983) Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Appl Opt 22:20–36CrossRefPubMedGoogle Scholar
  11. Gower J, King S (2007) An Antarctic ice-related “superbloom” observed with the MERIS satellite imager. Geophys Res Lett 34:L15501. doi:10.1029/2007GL029638 CrossRefGoogle Scholar
  12. Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36CrossRefGoogle Scholar
  13. Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112:3153–3159CrossRefGoogle Scholar
  14. Hirawake T, Satoh H, Ishimaru T, Yamaguchi Y, Kishino M (2000) Bio-optical relationship of Case I waters: the difference between the low- and mid-latitude waters and the Southern Ocean. J Oceanogr 56:245–260CrossRefGoogle Scholar
  15. Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642Google Scholar
  16. Lance VP, Hiscock MR, Hilting AK, Stuebe DA, Bidigare RR, Smith WO Jr, Barber RT (2007) Primary productivity, differential size fraction and pigment composition responses in two Southern Ocean in situ iron enrichments. Deep Sea Res 54:747–773CrossRefGoogle Scholar
  17. Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738CrossRefPubMedGoogle Scholar
  18. Lee ZP, Carder KL (2004) Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens Environ 89:361–368CrossRefGoogle Scholar
  19. Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41(27):5755–5772CrossRefPubMedGoogle Scholar
  20. Lee ZP, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J Geophys Res 112:C03009. doi:10.1029/2006JC003802 CrossRefGoogle Scholar
  21. Li WKW, Harrison WG (1982) Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton population. Mar Biol 72:175–182CrossRefGoogle Scholar
  22. Marra J, Trees CC, O’Reilly JE (2007) Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Res 54:155–163CrossRefGoogle Scholar
  23. Marrari M, Hu C, Daly K (2006) Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: a revisit. Remote Sens Environ 105:367–375CrossRefGoogle Scholar
  24. Metzl N, Brunet C, Jabaud-Jan A, Poisson A, Schauer B (2006) Summer and winter air-sea CO2 fluxes in the Southern Ocean. Deep Sea Res 53:1548–1563CrossRefGoogle Scholar
  25. Mitchell BG (1990) Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). In: Spinrad RW (ed) Ocean optics X. SPIE 1302, pp 137–148Google Scholar
  26. Mitchell BG (1992) Predictive bio-optical relationships for polar oceans and marginal ice zones. J Mar Sys 3:91–105CrossRefGoogle Scholar
  27. Moore JK, Abbott MR (2000) Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res 105(C12):28709–28722CrossRefGoogle Scholar
  28. Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106(C4):7163–7180CrossRefGoogle Scholar
  29. Neckel H, Labs D (1984) The solar radiation between 3300 and 12500 Å. Solar Phys 90:205–258CrossRefGoogle Scholar
  30. Orsi AH, WhitWorth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Res 42:641–673CrossRefGoogle Scholar
  31. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173Google Scholar
  32. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  33. Satoh H, Yamaguchi Y, Kokubun N, Aruga Y (1985) Application of infrared absorption spectrometry for measuring photosynthetic production of phytoplankton by the stable 13C isotope method. La Mer 23:171–176Google Scholar
  34. Smith WO Jr, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166CrossRefPubMedGoogle Scholar
  35. Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140°E. J Mar Syst 37:151–184CrossRefGoogle Scholar
  36. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J Oceanogr Soc Japan 46:190–194CrossRefGoogle Scholar
  37. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Toru Hirawake
    • 1
  • Shintaro Takao
    • 1
    • 4
  • Naho Horimoto
    • 2
  • Takashi Ishimaru
    • 2
  • Yukuya Yamaguchi
    • 2
  • Mitsuo Fukuchi
    • 3
  1. 1.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.Tokyo University of Marine Science and TechnologyMinato-kuJapan
  3. 3.National Institute of Polar ResearchTachikawaJapan
  4. 4.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations