Advertisement

Polar Biology

, Volume 34, Issue 5, pp 675–681 | Cite as

Isolation and characterization of Salmonella enterica from Antarctic wildlife

  • Germán B. Vigo
  • Gerardo A. Leotta
  • María Inés Caffer
  • Angela Salve
  • Norma Binsztein
  • Mariana Pichel
Original Paper

Abstract

In recent years, the human presence in Antarctica has increased and as a consequence, the possibility of microorganisms’ introduction. The aims of this work were to determine the presence of Salmonella enterica in Antarctic seabirds and sea mammals, to characterize the isolates identified, and to determine the genetic relation of Antarctic S. enterica isolates among them and compare with isolates of human, animal, and food sources recovered in Argentina. During the summer 2000 and 2002 in Potter Peninsula, and during the summer 2001 and 2003 in Hope Bay, a total of 1,739 fecal samples from Antarctic animals were collected and analyzed. In summer 2000, S. Newport and S. Enteritidis were isolated from 8.9% of southern giant petrels (Macronectes giganteus). In summer 2003, S. Enteritidis was isolated from 1.5% of Adelie penguins (Pygoscelis adeliae), from 5.5% of skuas (Stercorarius sp.), from 5.4% of kelp gulls (Larus dominicanus), and from 5.6% of Weddell seals (Leptonychotes weddelli). All the isolates belonging to the same serovar showed indistinguishable genomic profiles by Pulse-Field Gel Electrophoresis (PFGE) with XbaI and BlnI restriction enzymes and by Random Amplified Polymorphic DNA (RAPD-PCR). In addition, these Antarctic strains were different from S. enterica isolates from different sources identified in Argentina during the same or close time periods.

Keywords

Salmonella Antarctica PFGE RAPD-PCR 

Notes

Acknowledgments

The authors would like to thank Instituto Antártico Argentino and Departamento de Biología, Dirección Nacional del Antártico, for providing support for field work in Antarctica, especially to N. R. Coria. We are grateful to M. Pérez Cometto and D. Montalti for their field collaboration.

References

  1. Baker J, Hall A, Hiby L, Munro R, Robinson I, Ross H, Watkins J (1995) Isolation of Salmonellae from seals from UK waters. Vet Rec 136:471–472PubMedCrossRefGoogle Scholar
  2. Center for Disease Control and Prevention (2004) Standardized molecular subtyping of foodborne bacterial pathogens by pulse-field gel electrophoresis. Pulse-Net The National Molecular Subtyping Network for Foodborne Disease Surveillance, Atlanta, GAGoogle Scholar
  3. Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing, 17th Informational Supplement, M100-S17, 27(1), 32–37. CLSI, Wayne, PAGoogle Scholar
  4. Cockburn T (1947) Salmonella Typhimurium in penguins. J Comp 57:77–78Google Scholar
  5. Fenlon DR (1981) Seagulls (Larus spp.) as vectors of Salmonellae: an investigation into the range of serotypes and numbers of Salmonellae in gull faeces. J Hyg 86:195–202CrossRefGoogle Scholar
  6. Fenwick SG, Duignan PJ, Nicol CM, Leyland MJ, Hunter JEB (2004) Comparison of Salmonella serotypes isolated from New Zealand sea lions and feral pigs on the Auckland Islands by Pulse-Field Gel Electrophoresis. J Wild Dis 40:566–570Google Scholar
  7. Gilmartin WG, Vainik PM, Neill VM (1979) Salmonellae in feral pinnipeds off the southern Californian coast. J Wild Dis 15:511–514Google Scholar
  8. Hahn S, Peter HU, Quillfedt P, Reinhardt K (1998) The birds of the Potter Peninsula, King George Island, South Shetland Islands, Antarctica, 1965–1998. Mar Orn 26:1–6Google Scholar
  9. Hatch J (1996) Threats to public health from gulls (Laridae). Int J Environ Health Res 6:5–16CrossRefGoogle Scholar
  10. Koneman EW, Allen SD, Janda WM, Schreckenberg PC, Winn WC (1999) Enterobacteriaceae. In: Koneman EW (ed) Diagnóstico microbiológico, 5th edn. Editorial médica panamericana, Buenos Aires, Argentina, pp 171–250Google Scholar
  11. Le Bacq F, Louwagie B, Verhaegen J (1994) Salmonella Typhimurium and Salmonella Enteritidis: changing epidemiology from 1973–1992. Eur J Epidemiol 10:367–371PubMedCrossRefGoogle Scholar
  12. Leotta GA, Chinen I, Vigo G, Pecoraro M, Rivas M (2006a) Outbreaks of avian cholera in Hope Bay, Antarctica. J Wild Dis 42:259–270Google Scholar
  13. Leotta GA, Vigo GB, Giacoboni G (2006b) Isolation of Campylobacter lari from seabirds in Hope Bay, Antarctica. Polish Polar Res 27:303–308Google Scholar
  14. Levy S, Marshall B, Schluederberg S, Rowse D, Davis J (1988) High frequency of antimicrobial resistance in human fecal flora. Antimicrob Agents Chemoter 32:1801–1806Google Scholar
  15. Molla B, Berhanu A, Muckle A, Cole L, Wickie E, Kleer J, Hildebrandt G (2006) Multidrug resistance and distribution of Salmonella serovars in slaughtered pigs. J Vet Med B 53:28–33CrossRefGoogle Scholar
  16. Monaghan P, Shedden C, Ensor K, Fricker C, Girwood R (1985) Salmonella carriage by herring gulls in the Clyde area of Scotland in relation to their feeding ecology. J Appl Ecol 22:669–680CrossRefGoogle Scholar
  17. Murray MD (1964) Ecology of the ectoparasites of seals and penguins. In: Carrick R, Holdgate M, Prevost J (eds) Biologie antarctique: premier symposium organise par le SCAR. Hermann, Paris, France, pp 241–245Google Scholar
  18. Nievas VF, Leotta GA, Vigo GB (2007) Subcutaneous clostridial infection in Adelie penguins in Hope Bay, Antarctica. Polar Biol 30:249–252CrossRefGoogle Scholar
  19. Oelke H, Steiniger F (1973) Salmonella in Adelie penguins (Pygoscelis adeliae) and south polar skuas (Catharacta maccormicki) on Ross Island, Antarctica. Avian Dis 17:568–573PubMedCrossRefGoogle Scholar
  20. Olsen B, Bergström S, McCafferty D, Sellin M, Wiström J (1996) Salmonella enteritidis in Antarctica: zoonosis in man or humanosis in penguins? Lancet 348:1319–1320PubMedCrossRefGoogle Scholar
  21. Pacheco ABF, Guth BEC, de Almeida DF, Ferreira LCS (1996) Characterization of enterotoxigenic Escherichia coli by random amplification of polymorphic DNA. Res Microbiol 147:175–182PubMedCrossRefGoogle Scholar
  22. Palmgren H, Sellin M, Bergström S, Olsen B (1997) Enteropathogenic bacteria in migrating birds arriving in Sweden. Scand J Infect Dis 29:565–568PubMedCrossRefGoogle Scholar
  23. Palmgren H, McCafferty D, Aspán A, Broman T, Sellin M, Wollin R, Bergström S, Olsen B (2000) Salmonella in sub-Antarctica: low heterogeneity in Salmonella serotypes in South Georgian seals and birds. Epidemiol Infect 125:257–262PubMedCrossRefGoogle Scholar
  24. Poppe C, Ayroud M, Ollis G, Chirino-Treso M, Smart N, Quessy S, Michel P (2001) Trends in antimicrobial resistance of Salmonella isolated from animals, foods of animal origin and the environment of animal production in Canada 1994–1997. Microb Drug Resist 7:197–212PubMedCrossRefGoogle Scholar
  25. Poppof M, Bockemuhl J, McWorther-Murlin A (1990) Supplement 1990 (no 34) to the Kauffman-White scheme. Res Microbiol Inst Pasteur 142:1029–1033Google Scholar
  26. Rodrigue DC, Tauxe R, Rowe B (1990) International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 105:21–27PubMedCrossRefGoogle Scholar
  27. Scientific Committee Antarctic Research (2001) Report on the opened-ended Intersessional Contact on Diseases of Antarctic Wildlife. IV CEP Working Paper WP-11 Agenda Item 4d, Australia. http://www.cep.aq
  28. Sieburth J (1979) Gastrointestinal microflora of Antarctic birds. J Bacteriol 15:511–514Google Scholar
  29. Smith WA, Mazet JA, Hirsh DC (2002) Salmonella in California wildlife species: prevalence in rehabilitation centers and characterization of isolates. J Zoo Wildl Med 33:228–235PubMedGoogle Scholar
  30. Soucek Z, Mushin R (1970) Gastrointestinal bacteria of certain Antarctic birds and mammals. Appl Microbiol 20:561–566PubMedGoogle Scholar
  31. Thornton SM, Nolan S, Gulland F (1998) Bacterial isolates from California sea lions (Zalophus californianus), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the central California coast, 1994–1995. J Zoo Wildl Med 29:171–176PubMedGoogle Scholar
  32. Van Riper CI, Goff ML, Laird M (1986) The epizootiology and ecological significance of Malaria in Hawaiian land birds. Ecol Monogr 56:327–344CrossRefGoogle Scholar
  33. Warner RE (1968) The role of introduced diseases in the extinction of endemic Hawaiian avifauna. Condor 70:101–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Germán B. Vigo
    • 1
  • Gerardo A. Leotta
    • 2
    • 3
  • María Inés Caffer
    • 4
  • Angela Salve
    • 4
  • Norma Binsztein
    • 4
  • Mariana Pichel
    • 4
  1. 1.Cátedra de Microbiología, Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Laboratorio de Microbiología, Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Servicio Enterobacterias, Departamento BacteriologíaInstituto Nacional de Enfermedades Infecciosas—ANLIS “Dr. Carlos G. Malbrán”Buenos AiresArgentina

Personalised recommendations