Polar Biology

, Volume 34, Issue 3, pp 363–370

Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean

Original Paper

Abstract

Species’ distributions are dynamic and are linked to the changing physical environment. Temperature is considered to be a major factor influencing biogeography, especially in ectotherms such as the family Lithodidae. Lithodids are rare amongst decapods in their ability to inhabit the higher latitudes of the Southern Ocean; however, they are usually found in locations where water temperature is above 0.5°C. This study, for the first time, provides a baseline indication of the limits of the lithodid distribution around Antarctica, which will be instrumental in any future work on range extensions in this group. The distribution of lithodids is likely to change as temperatures along the West Antarctic Peninsula continue to rise, and range extensions by durophagous predators, such as the lithodids, are regarded as a potential threat to the unique structure of Antarctic continental-shelf ecosystems.

Keywords

Cold adaptation King crab Predators Climate change Polar ecosystems Biogeography 

References

  1. Acosta J, Canals M, Herranaz P, Sans JL (1989) Investigación geológica-geofísica y sedimentológica en el arco de Escócia y península Antártica. In: MAPA (ed) Resultados de la campagna “ANTARTIDA 8611”. Publ Espec Inst Esp Oceanogr No 2, Madrid, pp 9–82Google Scholar
  2. Ahyong ST (2010) King crabs of New Zealand, Australia and the Ross Sea (Crustacea: Decapoda: Lithodidae. NIWA Biodiv Mem 123:1–194Google Scholar
  3. Ahyong ST, Dawson EW (2006) Lithodidae from the Ross Sea, Antarctica, with descriptions of two new species (Crustacea: Decapoda: Anomura). Zootaxa 1303:45–68Google Scholar
  4. Anger K, Thatje S, Lovrich G, Calcagno J (2003) Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithodid crab from high latitudes. Mar Ecol Prog Ser 253:243–251CrossRefGoogle Scholar
  5. Anger K, Lovrich GA, Thatje S, Calcagno JA (2004) Larval and early juvenile development of Lithodes santolla (Molina, 1782) (Decapoda: Anomura: Lithodidae) reared at different temperatures in the laboratory. J Exp Mar Biol Ecol 306:217–230CrossRefGoogle Scholar
  6. Antezana T (1999) Plankton of the southern Chilean fjords: trends and linkages. Scient Mar 63(supp 1):69–80Google Scholar
  7. Arana EP, Retamal MA (1999) New distribution of Paralomis birsteini Macpherson, 1988 in Antarctic waters (Anomura, Lithodidae, Lithodinae). Invest Mar (Valparaíso) 27:101–110Google Scholar
  8. Arnaud PM, Do-Chi T (1979) Résultats préliminaries obtenus sur les lithodes aux iles Crozet, Marion et Prince Edward, pendant la campagne océanographique MD.08. C.N.F.R.A. (Comité nat franç Rech antarct) 44:135–136Google Scholar
  9. Arntz W, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304Google Scholar
  10. Arntz WE, Thatje S, Gerdes D, Gili JM, Gutt Jacob U, Montiel A, Orejas C, Teixidó N (2005) The Antarctic-Magellan connection: Macrobenthos ecology on the shelf and upper slope, a progress report. Scient Mar 69(Suppl 2):237–269Google Scholar
  11. Arntz WE, Thatje S, Linse K, Avila C, Ballesteros M, Barnes DKA, Cope T, Cristóbo Rodríguez FJ, De Broyer C, Gutt J, Isla E, López-González P, Montiel A, Munilla T, Ramos Esplá AA, Raupach M, Rauschert M, Rodríguez E, Teixidó T (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96CrossRefGoogle Scholar
  12. Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol System 38:129–154CrossRefGoogle Scholar
  13. Atkinson D, Morley SA, Weetman D, Hughes RN (2001) Offspring size responses to maternal temperature in ectotherms. In: Atkinson D, Thorndyke M (eds) Environment and animal development: Genes, Life histories and plasticity. Oxford Bios Scientific Publishers, Oxford, pp 265–285Google Scholar
  14. Barker PF, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic circumpolar current. Earth Sci Rev 66(1–2):143–162CrossRefGoogle Scholar
  15. Barnes DA, Fuentes V, Clarke A, Schloss IR, Wallace MI (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Res II 53(8–10):853–865CrossRefGoogle Scholar
  16. Brandt A, Gooday AJ, Brandao SN, Brix S, Brokeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insight into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–312CrossRefPubMedGoogle Scholar
  17. Calcagno JA, Thatje S, Anger K, Lovrich GA, Kaffenberger A (2003) Changes in biomass and chemical composition during lecithotrophic larval development of the Southern stone crab, Paralomis granulosa (Jacquinot). Mar Ecol Prog Ser 257:189–196CrossRefGoogle Scholar
  18. Calcagno JA, Lovrich GA, Thatje S, Nettelmann U, Anger K (2005) First year growth in the lithodids Lithodes santolla and Paralomis granulosa reared at different temperatures. J Sea Res 54(3):221–230CrossRefGoogle Scholar
  19. Crame JA (1994) The evolutionary history of Antarctica. In: Hempel G (ed) Antarctic science—global concerns. Springer, Berlin, pp 188–214Google Scholar
  20. Dayton PK, Robillard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–128CrossRefGoogle Scholar
  21. Deacon GER (1937) The hydrology of the Southern Ocean. Discov Rep 15:3–122Google Scholar
  22. Feldmann RM, Tshudy DM (1989) Evolutionary patterns in macrurous decapod crustaceans from Cretaceous to early Cenozoic rocks of the James Ross Island region, Antarctica. In: Crame JA (ed) Origins of the Antarctic Biota. Geological Society, Special Publications, London, pp 183–195Google Scholar
  23. Fischer S, Thatje S, Brey T (2009) Early egg traits in Cancer setosus (Decapoda Brachyura): effects of temperature and female size. Mar Ecol Prog Ser 377:193–202CrossRefGoogle Scholar
  24. Foster TD (1984) The marine environment. In: Laws RM (ed) Antarctic ecology, vol 2. Academic Press, London, pp 345–371Google Scholar
  25. Frederich M, Sartoris FJ, Pörtner HO (2001) Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation? Polar Biol 24:719–723CrossRefGoogle Scholar
  26. García Raso JE, Manjón-Cabeza ME, Ramos A, Olasi I (2005) New record of Lithodidae (Crustacea, Decapoda, Anomura) from the Antarctic (Bellingshausen Sea). Polar Biol 28:642–646CrossRefGoogle Scholar
  27. Gorny M (1999) On the biogeography and ecology of the Southern Ocean decapod fauna. Scient Mar 63(S1):367–382Google Scholar
  28. Gorny M, Arntz WE, Clarke A, Gore DJ (1992) Reproductive biology of caridean decapods from the Weddell Sea. Polar Biol 12:111–120CrossRefGoogle Scholar
  29. Griffiths HJ, Linse K, Barnes DKA (2008) Distribution of macrobenthic taxa across the Scotia Arc, Antarctica. Antarct Sci 20(3):213–226CrossRefGoogle Scholar
  30. Hall S, Thatje S (2009) Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the family Lithodidae. J Biogeogr 36(11):2125–2135CrossRefGoogle Scholar
  31. Holm-Hansen O (1985) Nutrient cycles in Antarctic marine ecosystems. In: Siegfried WR, Condy RR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 6–10Google Scholar
  32. Jørgensen LL, Manushin I, Sundet JH, Birkely SR (2005) The intentional introduction of the marine red king crab Paralithodes camtschaticus into the southern Barents Sea. ICES Cooper Res Rep vol 277, p 18Google Scholar
  33. Klages M, Gutt J, Starmans A, Bruns T (1995) Stone crabs close to the Antarctic continent: Lithodes murrayi Henderson, 1888 (Crustacea; Decapoda; Anomura) off Peter I Island (68°51′ S, 91°51′ W). Polar Biol 15:73–75CrossRefGoogle Scholar
  34. Kurata H (1960) Studies on the larva and post-larva of Paralithodes camtschatica III. The influence of temperature and salinity on the survival and growth of the larva. Bull Hokkaido Reg Fish Res Lab 21:9–14Google Scholar
  35. Lamb HH (1977) Climatic history and the future. Methuen, LondonGoogle Scholar
  36. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005 Volume 1: Temperature. NOAA Atlas NESDIS 61 (S. Levitus [ed]). US Government Printing Office, Washington, DCGoogle Scholar
  37. López Abellán LJ, Balguerías JA (1993) On the presence of Paralomis spinosissima and P. formosa in catches taken during the Spanish survey Antartida 8611. CCAMLR Sci 1:165–173Google Scholar
  38. Lovrich GA (1999) Seasonality of larvae of Brachyura and Anomura (Crustacea, Decapoda) in the Beagle Channel, Argentina. Scient Mar 63(Suppl 1):347–354Google Scholar
  39. Lovrich GA, Romero MC, Tapella F, Thatje S (2005) Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Scient Mar 69:183–193Google Scholar
  40. Macpherson E (1988) Revision of the Family Lithodidae Samouelle, 1819 (Crustacea: Decapoda: Anomura) in the Atlantic Ocean. Monogr Zool Mar 2:9–153Google Scholar
  41. Macpherson E (2004) A new species and new records of lithodid crabs (Crustacea: Decapoda: Lithodidae) from the Crozet and Kerguelen Islands area (Subantarctica). Polar Biol 27(7):418–422CrossRefGoogle Scholar
  42. McClintock JB, Baker BJ (1997) A review of the chemical ecology of Antarctic marine invertebrates. Am Zool 37:329–342Google Scholar
  43. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604CrossRefGoogle Scholar
  44. Miquel JC, Arnaud PM, Dochi T (1985) Population structure and migration of the stone crab Lithodes murrayi in the Crozet Islands, sub-Antarctic Indian Ocean. Mar Biol 89(3):263–269CrossRefGoogle Scholar
  45. Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar front from satellite sea-surface temperature data. J Geophys Res 104:3059–3073Google Scholar
  46. Nakanishi T (1981) The effect of temperature on growth, survival and oxygen consumption of larvae and post larvae of Paralithodes brevipes. Bull Jpn Sea Reg Fish Res Lab (Nissuiken Hokoku) 32:49–56Google Scholar
  47. Nakanishi T (1985) The effects of the environment on the survival rate, growth and respiration of eggs, larvae and post larvae of king crab (Paralithodes camtschatica). International King Crab Symposium. Alaska Sea Grant Ankorage, Alaska, pp 167–185Google Scholar
  48. Nowlin WD, Klink JM (1986) The physics of the Antarctic circumpolar current. Rev Geophys 24:489–491CrossRefGoogle Scholar
  49. Olbers D, Gouretski VV, Seiss G, Schröter J (1992) The Hydrographic Atlas of the Southern Ocean. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 17:82 plates. (http://odv.awi.de/en/data/ocean/southern_ocean_atlas/)
  50. Orsi AH, Whitworth TW, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res 42:641–673CrossRefGoogle Scholar
  51. Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146CrossRefPubMedGoogle Scholar
  52. Purves MG, Agnew DJ, Moreno G, Daw T, Yau C, Pilling G (2003) Distribution, demography, and discard mortality of crabs caught as bycatch in an experimental pot fishery for toothfish Dissostichus eleginoides in the South Atlantic. Fish Bull 101:874–888Google Scholar
  53. Rintoul SR, Hughes CW, Olbers D (2001) The Antarctic circumpolar current system. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, London, pp 271–302CrossRefGoogle Scholar
  54. Shirley TC, Shirley SM (1989) Temperature and salinity tolerances and preferences of red king crab larvae. Mar Beh Physiol 16:19–30CrossRefGoogle Scholar
  55. Shirley TC, Zhou S (1997) Lecithotrophic development of the golden king crab Lithodes aequispinus (Anomura: Lithodidae). J Crust Biol 17(2):207–216CrossRefGoogle Scholar
  56. Spiridonov V, Türkay M, Arntz W, Thatje S (2006) A new species of the genus Paralomis from the Spiess seamount near Bouvet Island (Southern Ocean), with notes on habitat and ecology. Polar Biol 29:137–146CrossRefGoogle Scholar
  57. Thatje S (2004) Reproductive trade-offs in benthic decapod crustaceans of high southern latitudes: tolerance of cold and food limitation. Rep Polar Mar Res 483:1–183Google Scholar
  58. Thatje S, Arntz WE (2004) Antarctic reptant decapods: more than a myth? Polar Biol 27:195–201CrossRefGoogle Scholar
  59. Thatje S, Schnack-Schiel S, Arntz WE (2003) Developmental trade-offs in Subantarctic meroplankton communities and the enigma of low decapod diversity in high southern latitudes. Mar Ecol Prog Ser 260:195–207CrossRefGoogle Scholar
  60. Thatje S, Anger K, Calcagno JA, Lovrich GA, Pörtner HO, Arntz WE (2005) Challenging the cold: crabs reconquer the Antarctic. Ecology 86(3):619–625CrossRefGoogle Scholar
  61. Thatje S, Hall S, Held C, Hauton C, Tyler P (2008) Encounter of Paralomis birsteini on the continental slope of Antarctica, sampled by ROV. Polar Biol 31(9):1143–1148CrossRefGoogle Scholar
  62. Thiel H, Pörtner HO, Arntz WE (1996) Deep-sea and extreme shallow-water habitats: affinities and adaptations. In: Uiblein F, Ott J, Stachowitsch M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosystem Ecol Ser 11:183–219Google Scholar
  63. Wägele J-W (1987) On the reproductive biology of Ceratoserolis trilobitoides (Crustacea: Isopoda): latitudinal variation of fecundity and embryonic development. Polar Biol 7:11–24CrossRefGoogle Scholar
  64. Zaklan SD (2002) Review of the family Lithodidae (Crustacea: Anomura: Paguroidea): Distribution, biology, and fisheries. In: Paul AJ, Dawe EG, Elner R, Jamieson GS, Kruse GH, Otto RS, Sainte-Marie B, Shirley TC, Woodby D (eds) Crabs in cold water regions: biology, management, and economics. University of Alaska Sea Grant College Program AK-SG-02–01, Fairbanks, pp 751–845Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.National Oceanography Centre, Southampton, School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations