Polar Biology

, Volume 33, Issue 12, pp 1615–1628 | Cite as

Interannual meteorological variability and its effects on a lake from maritime Antarctica

  • Carlos Rochera
  • Ana Justel
  • Eduardo Fernández-Valiente
  • Manuel Bañón
  • Eugenio Rico
  • Manuel Toro
  • Antonio Camacho
  • Antonio Quesada
Original paper


The present study shows the occurrence of remarkable interannual variation in the meteorological conditions at Byers Peninsula (Livingston Island, South Shetlands Islands, Antarctica), in which one of the summers was significantly colder than the others. Within this climatic scenario, a limnological study was carried out at Lake Limnopolar during three consecutive summer seasons (2001/2002, 2002/2003 and 2003/2004). The year-to-year meteorological variation observed during this period resulted in marked differences in the timing and duration of the ice-free period. As a result, physical and chemical conditions changed and were followed by variations in the biological characteristics of the lake. More significant dissimilarities took place during summer 2003/2004 relative to the preceding years. This season was characterized by a delay of 55 or 25 days in the ice-out timing compared to 2001/2002 or 2002/2003, respectively, and also a much shorter ice-free period. Higher algal and bacterial abundances in the surface layers occurred at the onset of ice melting due to increases in nutrients and light availability. The trophic interactions could also be affected by ice-out timing, as a consequence of the prolongation of the ice-cover period. From our findings, we describe links between the meteorological variations during those 3 years and the shifts in the water bodies, pointing out their high sensitivity to environmental changes that may occur at different time-scales. Furthermore, our results emphasize how the interannual meteorological variability needs to be investigated as a triggering factor of the limnological variations to understand the effects of global change on limnetic ecosystems in Maritime Antarctica.


Byers Peninsula Limnology Meteorology Ice dynamics Copepods Microbial Plankton community 



We are grateful to Ministerio of Educación e Innovación (Spain) that funded this research by the projects REN2000-0435-ANT to Antonio Quesada, CGL2005-06549-C02-01/ANT to Antonio Quesada, CGL2005-06549-C02-02/ANT to Antonio Camacho (in this case with European FEDER funds) and CGL2007-29841-E to Antonio Camacho. We thank our scientific colleagues and field assistants for their help in the field and for fruitful scientific discussion. We also very much appreciate the logistic help and support from the UTM (Maritime Technology Unit, CSIC) and from the Las Palmas crew (Spanish Navy) that made this expedition possible. We are grateful for the comments and suggestions of three anonymous reviewers.


  1. Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biol 41:621–634CrossRefGoogle Scholar
  2. APHA-AWWA-WPCF (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Bañón M (2001) Meteorological observations at the Spanish Antarctic Base Juan Carlos I. [in Spanish]. Spanish Ministry of Environment. National Institute of Meteorology, MadridGoogle Scholar
  4. Bengtsson L (1996) Mixing in ice-covered lakes. Hydrobiologia 322:91–97CrossRefGoogle Scholar
  5. Bengtsson L, Svensson T (1996) Thermal regime of ice covered Swedish lakes. Nord Hydrol 27:39–56Google Scholar
  6. Blenckner T (2005) A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533:1–14CrossRefGoogle Scholar
  7. Borghini F, Colacevich A, Caruso T, Bargagli R (2008) Temporal variation in the water chemistry of northern Victoria Land lakes (Antarctica). Aquat Sci 70:134–141CrossRefGoogle Scholar
  8. Cahill KL, Gunn JM, Futter MN (2005) Modelling ice cover, timing of spring stratification, and end-of-season mixing depth in small Precambrian Shield lakes. Can J Fish Aquat Sci 62:2134–2142CrossRefGoogle Scholar
  9. Camacho A (2006) Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands. Rev Environ Sci Biotechnol 5:167–185CrossRefGoogle Scholar
  10. Dore JE, Priscu JC (2001) Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46:1331–1346CrossRefGoogle Scholar
  11. Drago EC (1980) Estudios limnológicos en la Península Potter, Isla 25 de Mayo (Shetland del Sur): características térmicas de los ambientes leníticos durante el verano 1977–78. Contr Rev Inst Antarct Argent 226:29–38Google Scholar
  12. Drago EC (1989) Thermal summer characteristics of lakes and ponds on Deception Island, Antarctica. Hydrobiologia 184:51–60CrossRefGoogle Scholar
  13. Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431CrossRefGoogle Scholar
  14. Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385PubMedCrossRefGoogle Scholar
  15. Fofonoff P, Millard RC Jr (1983) Algorithms for computation of fundamental properties of seawater. UNESCO Tech Pap Mar Sci 44Google Scholar
  16. Hawes I, Schwarz AM (2000) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15CrossRefGoogle Scholar
  17. Heywood RB (1967) Antarctic ecosystems. The freshwater lakes of Signy Island and their fauna. Philos Trans R Soc Lond B 261:347–362CrossRefGoogle Scholar
  18. Huiskes A, Quesada A (2002) Regional sensitivity to climate change in Antarctic terrestrial and marine ecosystems—RiSCC manual. Accessed 25 September 2002
  19. Izaguirre I, Mataloni G, Vinocur A, Tell G (1993) Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarct Sci 5:137–141CrossRefGoogle Scholar
  20. King JC (1994) Recent climate variability in the vicinity of the Antarctic Peninsula. Int J Climatol 14:357–369CrossRefGoogle Scholar
  21. Kotov AA (2007) Revision of the hirsuticornis-like species of Macrothrix Baird, 1843 (Cladocera: Anomopoda: Macrothricidae) from Subantarctic and temperate regions of the southern hemisphere. J Nat Hist 41:2569–2620CrossRefGoogle Scholar
  22. Lemmin U (1978) Lakes, chemistry, geology, physics. Springer, New YorkGoogle Scholar
  23. Livingstone DM (1997) Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim Change 37:407–439CrossRefGoogle Scholar
  24. Lizotte MP, Sharp TR, Priscu JC (1996) Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica. Polar Biol 16:155–162CrossRefGoogle Scholar
  25. López-Martínez J, Hathway B, Lomas S, Martínez de Pisón E, Arche A (1996) Structural geomorphology and geological setting. In: López-Martínez J, Thomson MRA, Thomson JW (eds) Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP Series, Sheet 5-A. British Antarctic Survey, Cambridge, pp 9–14Google Scholar
  26. Mataloni G, Tesolin G, Sacullo F, Tell G (2000) Factors regulating summer phytoplankton in a highly eutrophic Antarctic lake. Hydrobiologia 432:65–72CrossRefGoogle Scholar
  27. Mckenna KC, Moorhead DL, Roberts EC, Laybourn-Parry J (2006) Simulated patterns of carbon flow in the pelagic food web of Lake Fryxell, Antarctica: Little evidence of top-down control. Ecol Model 192:457–472CrossRefGoogle Scholar
  28. McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861CrossRefGoogle Scholar
  29. Palecki MA, Barry RG (1986) Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. J Climate Appl Meteorol 25:893–902CrossRefGoogle Scholar
  30. Park S, Brett MT, Müller-Solger A, Goldman CR (2004) Climatic forcing and primary productivity in a subalpine lake: interannual variability as a natural experiment. Limnol Oceanogr 49:614–619CrossRefGoogle Scholar
  31. Petrov MP, Terzhevik YA, Palshin NI, Zdorovennov RE, Zdorovennova GE (2005) Absorption of solar radiation by snow-and-ice cover of lakes. Water Resour 32:496–504CrossRefGoogle Scholar
  32. Prendez M, Wachter J, Vega C, Flocchini RG, Wakayabashi P, Morales JR (2009) PM2.5 aerosols collected in the Antarctic Peninsula with a solar powered sampler during austral summer periods. Atmos Environ 43:5575–5578CrossRefGoogle Scholar
  33. Priddle J, Hawes I, Ellis-Evans JC, Smith TJ (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238CrossRefGoogle Scholar
  34. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098PubMedCrossRefGoogle Scholar
  35. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645PubMedCrossRefGoogle Scholar
  36. Quesada A, Vincent WF, Kaup E, Hobbie JE, Laurion I, Pienitz R, López-Martínez J, Durán J-J (2006) Landscape control of high latitude lakes in a changing climate. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 221–252CrossRefGoogle Scholar
  37. Quesada A, Camacho A, Rochera C, Velázquez D (2009) Byers Peninsula: a reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. Polar Sci 3:181–187CrossRefGoogle Scholar
  38. Roberts EC JC, Priscu Laybourn-Parry J (2004) Microplankton dynamics in a perennially ice-covered Antarctic lake–Lake Hoare. Freshw Biol 49:853–869CrossRefGoogle Scholar
  39. Roberts EC, Laybourn-Parry J, Mcknight DM, Novarino G (2000) Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshw Biol 44:649–661CrossRefGoogle Scholar
  40. Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Change Biol 15:1394–1404CrossRefGoogle Scholar
  41. Serrano E, Martínez De Pisón E, López-Martínez J (1996) Periglacial and nival landforms and deposits. In: López-Martínez J, Thomson MRA, Thomson JW (eds) Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP Series. Sheet 5-A. British Antarctic Survey, Cambridge, pp 28–34Google Scholar
  42. Spaulding SA, McKnight DM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541CrossRefGoogle Scholar
  43. Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC, pp 153–189Google Scholar
  44. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Springer, New YorkGoogle Scholar
  45. Tanabe Y, Kudoh S, Imura S, Fukuchi M (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biol 2:199–208Google Scholar
  46. Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Avendaño MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649CrossRefGoogle Scholar
  47. Utermöhl H (1958) Zur vervollkommung der quantitativen phytoplankton-methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  48. Van Lipzig NPM, King JC, Lachlan-Cope TA, Van Den Broeke MR (2005) Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J Geophys Res 109:D24106. doi: 10.1029/2004JD004701 CrossRefGoogle Scholar
  49. Vincent WF (1988) Microbial ecosystems of Antarctica (Studies in polar research). Cambridge University Press, CambridgeGoogle Scholar
  50. Vincent WF, Downes MT, Castenholz RW, Howard-Williams C (1993) Community structure and pigment organization of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221CrossRefGoogle Scholar
  51. Walton DWH, Doake CSM (eds) (1987) Antarctic science. Cambridge, Cambridge UniversityGoogle Scholar
  52. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282CrossRefGoogle Scholar
  53. Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Change Biol 10:1844–1856CrossRefGoogle Scholar
  54. Wynne RH, Magnuson JJ, Clayton MK, Lillesand TM, Rodman DC (1996) Determinants of temporal coherence in the satellite-derived 1987–1994 ice break-up dates of lakes on the Laurentian Shield. Limnol Oceanog 41:832–838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Carlos Rochera
    • 1
  • Ana Justel
    • 2
  • Eduardo Fernández-Valiente
    • 3
  • Manuel Bañón
    • 4
  • Eugenio Rico
    • 5
  • Manuel Toro
    • 6
  • Antonio Camacho
    • 1
  • Antonio Quesada
    • 3
  1. 1.Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Departamento de Microbiología y EcologíaUniversitat de ValènciaBurjassotSpain
  2. 2.Departamento de MatemáticasUniversidad Autónoma de MadridMadridSpain
  3. 3.Departamento de BiologíaUniversidad Autónoma de MadridMadridSpain
  4. 4.Agencia Estatal de Meteorología, Observatorio de Ciudad JardínAlicanteSpain
  5. 5.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  6. 6.Centro de Estudios Hidrográficos, CEDEXMadridSpain

Personalised recommendations