Polar Biology

, Volume 34, Issue 2, pp 169–180 | Cite as

Introduced black rats Rattus rattus on Ile de la Possession (Iles Crozet, Subantarctic): diet and trophic position in food webs

  • Benoît Pisanu
  • Stéphane Caut
  • Sylvain Gutjahr
  • Philippe Vernon
  • Jean-Louis Chapuis
Original Paper

Abstract

Rats introduced on islands can affect ecosystem structure and function by feeding on terrestrial plants and both marine and terrestrial animals. The diet and trophic position of Rattus rattus introduced on Ile de la Possession (Iles Crozet) was assessed from two sites, according to the presence or absence of a king penguin colony. We used three complementary assays: macroanalyses of the stomach, faecal microhistology, and stable isotope analyses of δ15N/δ13C in liver. Near the rookery, spermatophytes contributed on average 50% (confidential interval: 23–75) to the diet based on isotopes, mainly consisting in reproductive parts of Poa spp., Agrostis magellanica, and Cerastium fontanum identified in faeces. Terrestrial animal preys were represented by insects that contributed 25% (0–56) in isotopes, dominated in faeces by caterpillars of Pringleophaga spp. and adult weevils. Bird remains were found in faeces, forming 18% (6–30) of isotopes. Terrestrial earthworms contributed to 7% (0–21), with chaetae observed in faeces. On the other site, spermatophytes represented 62% (51–73) of assimilated food in rats’ livers, mainly formed by Poaceae and Acaena magellanica, insects by caterpillars [24% (10–39)], and terrestrial earthworms [13% (2–23)]. Our results suggest that rats, which were found at the top of terrestrial food chains, may have a direct role on a such simplified ecosystem, by preying on the most abundant and largest body-sized terrestrial invertebrates,—e.g. the keystone species Pringleophaga spp.—, and by feeding on both reproductive and vegetative parts of autochthonous and introduced plants. The discrepancies and usefulness of employing both isotopes and faecal analyses are discussed.

Keywords

Introduced rodent Rattus rattus Diet Stable isotopes Food web Subantarctic island 

References

  1. Anderson WB, Polis GA (1999) Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–332. doi:10.1007/s004420050733 CrossRefGoogle Scholar
  2. Angel A, Wanless RM, Cooper J (2009) Review of impacts of the introduced house mouse on islands in the Southern Ocean: are mice equivalent to rats? Biol Invasions 11:1743–1754. doi:10.1007/s10530-008-9401-4 CrossRefGoogle Scholar
  3. Barrow LM, Bjorndal KA, Reich KJ (2008) Effects of preservation method on stable carbon and nitrogen isotope values. Phys Biochem Zool 81:688–693. doi:10.1086/588172 CrossRefGoogle Scholar
  4. Bergström DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81. doi:10.1111/j.1365-2664.2008.01601.x CrossRefGoogle Scholar
  5. Best LW (1969) Food of the roof rat (Rattus rattus rattus L.) in two forest areas of New Zealand. N Z J Sci 12:258–267Google Scholar
  6. Carcaillet C (1995) Effet des contraintes (vents et embruns) sur la composition et la structure de la végétation des pentes drainées de l’île de la Possession (archipel de Crozet, subantarctique). Can J Bot 73:1739–1749. doi:10.1139/b95-186 CrossRefGoogle Scholar
  7. Caut S, Angulo E, Courchamp F (2008a) Caution on isotopic model use for analyses of consumer diet. Can J Zool 86:438–445. doi:10.1139/Z08-12 CrossRefGoogle Scholar
  8. Caut S, Angulo E, Courchamp F (2008b) Dietary shift of an invasive predator: rats, seabirds and sea turtles. J Appl Ecol 45:428–437. doi:10.1111/j.1365-2664-2007.01438.x CrossRefPubMedGoogle Scholar
  9. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Delta N-15 and Delta C-13): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453. doi:10.1111/j.1365-2664.2009.01620.x CrossRefGoogle Scholar
  10. Chapuis J-L, Boussès P, Barnaud G (1994) Alien mammals, impact and management in the French Subantarctic Islands. Biol Conserv 67:97–104. doi:10.1016/0006-3207(94)90353-0 CrossRefGoogle Scholar
  11. Chapuis J-L, Boussès P, Pisanu B, Réale D (2001) Comparative rumen and fecal diet microhistological determinations of European mouflon. J Range Manag 54:239–242CrossRefGoogle Scholar
  12. Chauvin G, Vernon P (1981) Quelques données sur la biologique et la systématique des Lepidoptères subantarctiques (Iles Crozet, Iles Kerguelen). Colloque sur les Ecosystèmes Subantarctiques. CNFRA 51:101–109Google Scholar
  13. Chiba S (2007) Morphological and ecological shifts in a land snail caused by the impact of an introduced predator. Ecol Res 22:884–891. doi:10.1007/s11284-006-0330-3 CrossRefGoogle Scholar
  14. Chown SL (1989) Habitat use and diet as biogeographic indicators for subantarctic Ectemnorhinini (Coleoptera: Curculionidae). Antarc Sci 1:23–30. doi:10.1017/S0954102089000052 Google Scholar
  15. Chown SL, Smith VR (1993) Climate change and the short-term impact of feral house mice at the sub-Antarctic Prince Edward Islands. Oecologia 96:508–516. doi:10.1007/BF00320508 CrossRefGoogle Scholar
  16. Clark DB (1981) Foraging patterns of black rats across a desert-montane forest gradient in the Galapagos Islands. Biotropica 13:182–194CrossRefGoogle Scholar
  17. Clout MN (1980) Ship rats (Rattus rattus L.) in a Pinus radiata plantation. N Z J Ecol 3:141–145Google Scholar
  18. Copson GR (1986) The diet of the introduced rodents Mus musculus L. and Rattus rattus L. on Subantarctic Macquarie Island. Aust Wildl Res 13:441–445. doi:10.1071/WR9860441 CrossRefGoogle Scholar
  19. Courchamp F, Chapuis J-L, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383. doi:10.1017/S1464793102006061 CrossRefPubMedGoogle Scholar
  20. Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961. doi:10.1126/science.1108485 CrossRefPubMedGoogle Scholar
  21. Daniel MJ (1973) Seasonal diet of the ship rat (Rattus r. rattus) in lowland forest in New Zealand. Proc N Z Ecol Soc 20:21–30Google Scholar
  22. Davies L (1972) Two Amblystogenium species (Col. Carabidae) co-existing on the subantarctic Possession Island, Crozet Islands. Entomol Scand 3:275–286Google Scholar
  23. Davies L (1973) Observations on the distribution of surface-living land arthropods on the subantarctic Ile de la Possession, Iles Crozet. J Nat Hist 7:241–253. doi:10.1080/00222937300770201 CrossRefGoogle Scholar
  24. Davies L (1987) Long adult life, low reproduction and competition in two sub-Antarctic carabid beetles. Ecol Entomol 12:149–162. doi:10.1111/j.1365-2311.1987.tb00994.x CrossRefGoogle Scholar
  25. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. doi:10.1016/0016-7037(78)90199-0 CrossRefGoogle Scholar
  26. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1 CrossRefGoogle Scholar
  27. Dickman CR, Huang C (1988) The reliability of fecal analysis as a method for determining the diet of insectivorous mammals. J Mammal 69:108–113CrossRefGoogle Scholar
  28. Drake DR, Hunt TL (2009) Invasive rodents on island: integrating historical and contemporary ecology. Biol Invasions 11:1483–1487. doi:10.1007/s10530-008-9392-1 CrossRefGoogle Scholar
  29. Ehrich D, Tarroux A, Stien J, Lecomte N, Killengreen S, Berteaux D, Yoccoz NG (2010) Stable isotope analysis: modelling lipid normalization for muscle and eggs from arctic mammals and birds. Methods Ecol Evol. doi:10.1111/j.2041-210X.2010.00047.x
  30. Erskine PD, Bergstrom DM, Schmidt S, Stewart GR, Tweedie CE, Shaw JD (1998) Subantarctic Macquarie Island–a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117:187–193. doi:10.1007/s004420050647 CrossRefGoogle Scholar
  31. Frenot Y, Gloaguen J-C, Massé L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50. doi:10.1016/S0006-3207(01)00052-0 CrossRefGoogle Scholar
  32. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72. doi:10.1017/S1464793104006542 CrossRefPubMedGoogle Scholar
  33. Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307. doi:10.1111/j.1461-0248.2006.00983.x CrossRefPubMedGoogle Scholar
  34. Goszczynski J, Jedrzejewska B, Jedrzejewski W (2000) Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. J Zool Lond 250:495–505. doi:10.1111/j.1469-7998.2000.tb00792.x Google Scholar
  35. Grant-Hoffman MN, Barboza PS (2010) Herbivory in invasive rats: criteria for food selection. Biol Invasions 12:805–825. doi:10.1007/s10530-009-9503-7 CrossRefGoogle Scholar
  36. Grant-Hoffman MN, Mulder CPH, Bellingham PJ (2010a) Effects of invasive rats and burrowing seabirds on seeds and seedlings on New Zealand islands. Oecologia 162:1005–1016. doi:10.1007/s00442-009-1500-0 CrossRefPubMedGoogle Scholar
  37. Grant-Hoffman MN, Mulder CPH, Bellingham PJ (2010b) Invasive rats alter woody seedlings composition on seabird-dominated islands in New Zealand. Oecologia 163:449–460. doi:10.1007/s00442-009-1523-6 CrossRefPubMedGoogle Scholar
  38. Hansson L (1970) Methods of morphological diet micro-analysis in rodents. Oikos 21:255–266CrossRefGoogle Scholar
  39. Holechek JL, Vavra M, Pieper RD (1982) Botanical composition determination of range herbivore diets: a review. J Range Manag 35:309–315CrossRefGoogle Scholar
  40. Huyser O, Ryan PG, Cooper J (2000) Changes in population size, habitat use and breeding biology of lesser sheathbills (Chionis minor) at Marion Island: impacts of cats, mice and climate change? Biol Conserv 92:299–310. doi:10.1016/S0006-3207(99)00096-8 CrossRefGoogle Scholar
  41. Innes J (2001) Advances in New Zealand mammalogy 1990–2000: European rats. J R Soc N Z 31:111–125. doi:10.1080/03014223.2001.9517642 Google Scholar
  42. Jackson AL, Inger R, Bearhop S, Parnell A (2008) Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: a discussion of Moore & Semmens. Ecol Lett 12:E1–E5. doi:10.1111/j.1461-0248.2008.01233.x CrossRefPubMedGoogle Scholar
  43. Johnston PR (2002) Biscogniauxia, Campbell Island, rats and beetles. Mycologist 16:172–174. doi:10.1017/S0269-915X(05)00106-0 CrossRefGoogle Scholar
  44. Jordan MJR (2005) Dietary analysis for mammals and birds: a review of field techniques and animal-management applications. Int Zoo Yb 39:108–116. doi:10.1111/j.1748-1090.2005.tb00010.x CrossRefGoogle Scholar
  45. Jouventin P, Bried J, Micol T (2003) Insular bird populations can be saved from rats: a long-term experimental study of white-chinned petrels Procellaria aequinoctialis in Ile de la Possession (Crozet archipelago). Polar Biol 26:371–378. doi:10.1007/s00300-003-0497-9 Google Scholar
  46. Klok CJ, Chown SL (1997) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). J Insect Physiol 43:685–694. doi:10.1016/S0022-1910(97)00001-2 CrossRefGoogle Scholar
  47. Kurle CM, Croll DA, Tershy BR (2008) Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated. Proc Natl Acad Sci USA 105:3800–3804. doi:10.1073/pnas.0800570105 CrossRefPubMedGoogle Scholar
  48. Le Roux V, Chapuis J-L, Frenot Y, Vernon P (2002) Diet of the house mouse (Mus musculus) on Guillou Island, Kerguelen archipelago, Subantarctic. Polar Biol 25:49–57. doi:10.1007/s003000100310 CrossRefGoogle Scholar
  49. Madec L, Bellido A (2007) Spatial variation of shell morphometrics in the subantarctic land snail Notodiscus hookeri from Crozet and Kerguelen Islands. Polar Biol 30:1571–1578. doi:10.1007/s00300-007-0318-7 CrossRefGoogle Scholar
  50. Maron JL, Estes JA, Croll DA, Danner EM, Elmendorf SC, Buckelew SL (2006) An introduced predator alters Aleutian island plant communities by thwarting nutrient subsidies. Ecol Monogr 76:3–24. doi:10.1890/05-0496 Google Scholar
  51. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi:10.1016/0016-7037(84)90204-7 CrossRefGoogle Scholar
  52. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480. doi:10.1111/j.1461-0248.2008.01163.x CrossRefPubMedGoogle Scholar
  53. Mulder CPH, Grant-Hoffman MN, Towns DR, Bellingham PJ, Wardle DA, Durrett MS, Fukami T, Bonner KI (2009) Direct and indirect effects of rats: does rat eradication restore ecosystem functioning of New Zealand seabird islands? Biol Invasions 11:1671–1688. doi:10.1007/s10530-008-9396-x CrossRefGoogle Scholar
  54. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672. doi:10.1371/journal.pone.0009672 CrossRefPubMedGoogle Scholar
  55. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320. doi:10.1146/annurev.es.18.110187.001453 CrossRefGoogle Scholar
  56. Phiri EE, McGeogh MA, Chown SL (2009) Spatial variation in structural damage to a keystone plant species in the sub-Antarctic: interactions between Azorella selago and invasive house mice. Antarct Sci 21:189–196. doi:10.1017/S0954102008001569 CrossRefGoogle Scholar
  57. Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423. doi:10.1086/285858 CrossRefGoogle Scholar
  58. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. doi:10.1146/annurev.ecolsys.28.1.289 CrossRefGoogle Scholar
  59. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 CrossRefGoogle Scholar
  60. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x CrossRefPubMedGoogle Scholar
  61. Prins HHT (1981) Why are mosses eaten in cold environments? Oikos 38:374–380CrossRefGoogle Scholar
  62. Pugh PJA, Scott B (2002) Biodiversity and biogeography of non-marine Mollusca on the islands of the Southern Ocean. J Nat Hist 36:927–952. doi:10.1080/00222930110034562 CrossRefGoogle Scholar
  63. Quillfeldt P, Schenk I, McGill RAR, Strange IJ, Masello JF, Gladbach A, Roesch V, Furness RW (2008) Introduced mammals coexist with seabirds at new island, Falkland Islands: abundance, habitat preferences, and stable isotope analysis of diet. Polar Biol 31:333–349. doi:10.1007/s00300-007-0363-2 CrossRefGoogle Scholar
  64. Ruffino L, Bourgeois K, Vidal E, Duhem C, Paracuellos M, Escribano F, Sposimo P, Baccetti N, Pascal M, Oro D (2009) Invasive rats and seabirds after 2,000 years of an unwanted coexistence on Mediterranean islands. Biol Invasions 11:1631–1651. doi:10.1007/s10530-008-9394-z CrossRefGoogle Scholar
  65. Sanchez-Piñero F, Polis GA (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81:3117–3132. doi:10.1890/0012-9658(2000)081[3117:BUDOAI]2.0.CO;2 Google Scholar
  66. Shaw JD, Hovenden MJ, Bergstrom DM (2005) The impact of introduced ship rats (Rattus rattus) on seedling recruitment and distribution of a subantarctic megaherb (Pleurophyllum hookeri). Aust Ecol 30:118–125. doi:10.1111/j.1442-9993.2005.tb00371.x CrossRefGoogle Scholar
  67. Siegel S, Castellan NJ Jr (1988) Non parametric statistics for the behavioural sciences. MacGraw Hill Inc, SingaporeGoogle Scholar
  68. Smith VR (1977) A qualitative description of energy flow and nutrient cycling in the Marion Island terrestrial ecosystem. Polar Rec 18:361–370. doi:10.1017/S0032247400000619 CrossRefGoogle Scholar
  69. Smith VR (2008) Energy flow and nutrient cycling in the Marion Island terrestrial ecosystem: 30 years on. Polar Rec 44:211–226. doi:10.1017/S0032247407007218 CrossRefGoogle Scholar
  70. Smith VR, Steenkamp M (1992) Soil macrofauna and nitrogen on a sub-Antarctic Island. Oecologia 92:201–206. doi:10.1007/BF00317365 CrossRefGoogle Scholar
  71. Smith VR, Avenant NL, Chown SL (2002) The diet and impact of house mouse on a subantarctic island. Polar Biol 25:703–715. doi:10.1007/s00300-002-0405-8 Google Scholar
  72. Stapp P (2002) Stable isotopes reveal evidence of predation by ship rats on seabirds on the Shiant Islands, Scotland. J Appl Ecol 39:831–840. doi:10.1046/j.1365-2664.2002.00754.x CrossRefGoogle Scholar
  73. Sugihara RT (1997) Abundance and diets of rats in two native Hawaiian forests. Pac Sci 51:189–198Google Scholar
  74. Sweetapple PJ, Nugent G (2007) Ship rat demography and diet following possum control in a mixed podocarp-hardwood forest. N Z J Ecol 31:186–201Google Scholar
  75. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37. doi:10.1007/BF00379558 CrossRefGoogle Scholar
  76. Tobin ME, Koehler AE, Sugihara RT (1994) Seasonal patterns of fecundity and diet of roof rats in a Hawaiian Macadamia orchard. Wildl Res 21:519–526. doi:10.1071/WR9940519 CrossRefGoogle Scholar
  77. Towns DR, Atkinson IAE, Daugherty CH (2006) Have the harmful effects of introduced rats on islands been exaggerated? Biol Invasions 8:863–891. doi:10.1007/s10530-005-0421-z CrossRefGoogle Scholar
  78. Towns DR, Wardle DA, Mulder CPH, Yeates G, Fitzgerald BM, Parrish GR, Bellingham PJ, Bonner KI (2009) Predation of seabirds by invasive rats: multiple indirect consequences for invertebrate communities. Oikos 118:420–430. doi:10.1111/j.1600-0706.2008.17186.x CrossRefGoogle Scholar
  79. Tréhen P, Bouché M, Vernon P, Frenot Y (1985) Organization and dynamics of Oligochaeta and Diptera on Possession Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 606–613Google Scholar
  80. van Aarde RJ, Ferreira SM, Wassenaar TD (2004) Do feral house mice have an impact on invertebrate communities on sub-Antarctic Marion Island? Austral Ecol 29:215–224. doi:10.1111/j.1442-9993.2004.tb00313.x CrossRefGoogle Scholar
  81. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (delta N-15) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158. doi:10.1139/cjfas-54-5-1142 CrossRefGoogle Scholar
  82. Vernon P, Vannier G, Tréhen P (1998) A comparative approach to the entomological diversity of polar regions. Acta Oecol 19:303–308. doi:10.1016/S1146-609X(98)80034-9 CrossRefGoogle Scholar
  83. Wardle DA, Bellingham PJ, Bonner KI, Mulder CPH (2009) Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. Ecology 90:452–464. doi:10.1890/08-0097.1 CrossRefPubMedGoogle Scholar
  84. Wroot AJ (1987) A quantitative method for estimating the amount of earthworm (Lumbricus terrestris) in animal diets. Oikos 44:239–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Benoît Pisanu
    • 1
  • Stéphane Caut
    • 2
  • Sylvain Gutjahr
    • 1
    • 3
  • Philippe Vernon
    • 3
  • Jean-Louis Chapuis
    • 1
  1. 1.Département Ecologie et Gestion de la BiodiversitéMuséum National d’Histoire Naturelle, UMR 7204 CERSPParis cedex 05France
  2. 2.Estación Biológica de DoñanaConsejo Superior de Investigationes Científicas (CSIC)SevillaSpain
  3. 3.Université de Rennes I, UMR 6553 CNRS ECOBIO, Station Biologique de PaimpontPaimpontFrance

Personalised recommendations