Polar Biology

, Volume 33, Issue 6, pp 807–822 | Cite as

Morphology, ontogenesis and mechanics of cervical vertebrae in four species of penguins (Aves: Spheniscidae)

  • Geoffrey Guinard
  • Didier Marchand
  • Frédéric Courant
  • Michel Gauthier-Clerc
  • Céline Le Bohec
Original Paper


Penguins (Aves: Spheniscidae) are pelagic, flightless seabirds, restricted to the southern hemisphere (Antarctic and sub-Antarctic areas, New Zealand, Australia, and nearby islands, as well as parts of South America and South Africa). They spend much of their life at sea, but return to islands and coasts to breed. Penguins are terrestrial as juveniles and aquatic as adults. To improve hydrodynamics, penguins tuck in their necks while swimming. They thus attain an “ichthyosaur” or “cetacean” body shape: characterised by telescoped cervicals. This mechanism is also used on land, associated with the posture of these birds. Our study of neck structure and cervical vertebrae morphology (morphological description, biometry and contour analysis) of the King Penguin (Aptenodytes patagonicus), Gentoo Penguin (Pygoscelis papua), Macaroni Penguin (Eudyptes chrysolophus) and Humboldt Penguin (Sphensicus humboldti) shows a highly specialised fitting in adults, which develops during ontogenesis. The growth of penguins proceeds by stages and there are key stages with regard to the design of the neck. Despite a common main structure, some characteristics vary between species. Distribution of cervical vertebrae can be defined by six modules. There are differences in modularity between species and also within species between different ontogenetical phases.


Penguins Spheniscidae Cervical vertebrae Ontogenesis Modularity 

Supplementary material

300_2009_759_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)


  1. Acosta Hospitaleche C (2004) Los pingüinos (Aves, Sphenisciformes) fósiles de Patagonia. Sistemática, biogeografía y evolución. Tesis doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, ArgentinaGoogle Scholar
  2. Acosta Hospitaleche C, Tambussi C (2006) Skull morphometry of Pygoscelis (Sphenisciformes): inter and intraspecific variations. Polar Biol 29:728–734CrossRefGoogle Scholar
  3. Bailey RC, Byrnes J (1990) A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Syst Zool 39:124–130CrossRefGoogle Scholar
  4. Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993) Handbook of avian anatomy: nomina anatomica avium, 2nd edn. Nuttall Ornithological Club, CambridgeGoogle Scholar
  5. Benoit J, Berlioz J, Bourliere F, Grasse PP, Letard E, Matthey R, Mayaud N, Oehmichen E, Pasteels J, Piveteau J, Portmann A, Rochon Duvigneaud A (1950) Traité de Zoologie, Anatomie—systématique—biologie, Tome XV Oiseaux. Masson et Cie Editeur, ParisGoogle Scholar
  6. Bertelli S, Gianninni N, Ksepka D (2006) Redescription and phylogenetic position of the early Miocene penguin Paraptenodytes antarcticus from Patagonia. Am Mus Novit 3525:1–36CrossRefGoogle Scholar
  7. Bertin A, David B, Cézilly F, Alibert P (2002) Quantification of sexual dimorphism in Asellus aquaticus (Crustacea : Isopoda) using outlines approach. Biol J Linn Soc 77:523–533CrossRefGoogle Scholar
  8. Chaline J, Marchand D (2002) Les merveilles de l’évolution. Edition Universitaires de Dijon (EUD), Collection SciencesGoogle Scholar
  9. Courant F, Marchand D, Renous S, Berge C, Le Maho Y (2003) Approche morphologique de l’adaptation à la nage chez les oiseaux (Spheniscidae): application des méthodes de morphométrie géométrique. Troisième symposium sur la morphologie et l’évolution des formes. Programme, p 68Google Scholar
  10. Del Hoyo J, Elliott A, Sargatal J, Cabot J, Carboneras C, Folch A, De Juana A, Llimona F, Matheu E, Martinez I, Martinez-Vilalta A, Motis A, Orta J (1992) Handbook of the birds of the world, volume I—ostrich to ducks. Lynx Editions, BarcelonaGoogle Scholar
  11. Dommergues CH (2001) CDFT, complex discrete fourier transform (Matlab Package) 2.7. Biogéosciences, Dijon. UMR CNRS 5561, DijonGoogle Scholar
  12. Garnier S (2003) Dynamique de la différenciation et de l’hybridation chez un carabe forestier, Carabus solieri: apports des approches combinées génétique et morphométrique. Thèse de doctorat, Université de Montpellier II, Centre de biologie des populations et écologieGoogle Scholar
  13. Garnier S, Magniez-Jannin F, Rasplus JY, Alibert P (2005) When morphometry meets genetics: inferring the phylogeography of Carabus Solieri using fourier analyses of promotum and male genitalia. J Evol Biol 18:269–280CrossRefPubMedGoogle Scholar
  14. Gervais P, Alix E (1877) Ostéologie et Myologie des Manchots ou Spheniscidae. J Zool Paris 6:424–472Google Scholar
  15. Klingenberg CP (2002) Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 287:3–10CrossRefPubMedGoogle Scholar
  16. Lestrel PE (1997) Fourier descriptors and their application in biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Livezey BC (1989) Morphometric patterns in recent and fossil penguins (Aves, Sphenisciformes). J Zool Lond 219:269–307CrossRefGoogle Scholar
  18. Marchand D (1999) Cranial restructuring in mammals having returned to an aquatic mode of life. Rev Paleobiol 18:197–220Google Scholar
  19. Nagle R (1990) Pingouins. Edimages, ParisGoogle Scholar
  20. Navarro N, Zatarain X, Montuire S (2004) Effects of morphometric descriptor changes on statistical classification and morphospaces. Biol J Linn Soc 83:243–260CrossRefGoogle Scholar
  21. Pycraft WP (1898) Contributions to the osteology of birds, part II. Impennes. Proc Zool Soc Lond 15:958–989Google Scholar
  22. Shufeldt W (1901) Osteology of the penguins. J Anat Physiol 35:390–404PubMedGoogle Scholar
  23. Simpson GG (1946) Fossil penguins. Bull Am Mus Nat Hist 87:1–99Google Scholar
  24. Tort A (2000) Caractérisation quantitative de la morphologie externe et interne de Terabratulida (Brachiopodes) actuels et jurassiques. Implication systématiques. Thèse de doctorat, Université de Bourgogne, Centre des sciences de la Terre, DijonGoogle Scholar
  25. Verhenyen R (1958) Convergence ou paramorphogenèse. Systématique et phylogénie des manchots (Sphenisciformes). Gerfaut 1:43–69Google Scholar
  26. Watson M (1883) Report on the anatomy of the Spheniscidae collected during the voyage of H.M.S Challenger. In: Murray J (ed) Report on the scientific results of the voyage of H.M.S Challenger during the years 1873–76, Zoology, vol 7. Neill and Company, Edinburgh, pp 1–244Google Scholar
  27. Zammit M, Daniels CB, Kear BP (2007) Elasmosaur (Reptilia: Sauropterygia) neck flexibility: Implication for feeding strategies. Comp Biochem Physiol A Mol Integr Phys 150:124–130CrossRefGoogle Scholar
  28. Zusi RL (1975) An interpretation of skull structure in penguins. In: Stonehouse B (ed) The biology of penguins. Macmillan Press, London, pp 59–84Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Geoffrey Guinard
    • 1
    • 2
  • Didier Marchand
    • 2
    • 3
  • Frédéric Courant
    • 2
    • 4
  • Michel Gauthier-Clerc
    • 5
  • Céline Le Bohec
    • 5
  1. 1.DijonFrance
  2. 2.CNRS UMR 5561, BiogéosciencesUniversité de BourgogneDijonFrance
  3. 3.NiceFrance
  4. 4.QuetignyFrance
  5. 5.Centre d’écologie et physiologie énergétiques, UPR/CNRS 9010StrasbourgFrance

Personalised recommendations