Polar Biology

, Volume 33, Issue 5, pp 713–719 | Cite as

Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers

  • Morgane Viviant
  • Andrew W. Trites
  • David A. S. Rosen
  • Pascal Monestiez
  • Christophe Guinet
Short Note

Abstract

We attached accelerometers to the head and jaw of a Steller sea lion (Eumetopias jubatus) to determine whether feeding attempts in a controlled setting could be quantified by acceleration features characteristic of head and jaw movements. Most of the 19 experimental feeding events that occurred during the 51 dives recorded resulted in specific acceleration patterns that were clearly distinguishable from swimming accelerations. The differential acceleration between the head-mounted and jaw-mounted accelerometers detected 84% of prey captures on the vertical axis and 89% on the horizontal axis. However, the jaw-mounted accelerometer alone proved to be equally effective at detecting prey capture attempts. Acceleration along the horizontal (surge)-axis appeared to be particularly efficient in detecting prey captures, and suggests that a single accelerometer placed under the jaw of a pinniped is a promising and easily implemented means of recording prey capture attempts.

Keywords

Prey capture Accelerometers Jaw movements Foraging activity Pinnipeds Steller sea lion 

References

  1. Ancel A, Horning M, Kooyman GL (1997) Prey ingestion revealed by oesophagus and stomach temperature recordings in cormorants. J Exp Biol 200:149–154PubMedGoogle Scholar
  2. Austin D, Bowen WD, McMillan JI, Boness DJ (2006) Stomach temperature telemetry reveals temporal patterns of foraging success in a free-ranging marine mammal. J Anim Ecol 75:408–420. doi:10.1111/j.1365-2656.2006.01057.x CrossRefPubMedGoogle Scholar
  3. Baechler J, Beck CA, Bowen WD (2002) Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can J Zool 80:1569–1577. doi:10.1139/z02-150 CrossRefGoogle Scholar
  4. Bowen WD, Tully D, Boness DJ, Bulheier BM, Marshall GJ (2002) Prey-dependent foraging tactics and prey profitability in a marine mammal. Mar Ecol Prog Ser 244:235–245. doi:10.3354/meps244235 CrossRefGoogle Scholar
  5. Boyd IL (1996) Temporal scales of foraging in a marine predator. Ecology 77:426–434. doi:10.2307/2265619 CrossRefGoogle Scholar
  6. Charrassin JB, Kato A, Handrich Y, Sato K, Naito Y, Ancel A, Bost CA, Gauthier-Clerc M, Ropert-Coudert Y, Le Maho Y (2001) Feeding behaviour of free-ranging penguins determined by oesophageal temperature. Proc R Soc Lond B 268:151–157. doi:10.1098/rspb.2000.1343 CrossRefGoogle Scholar
  7. Guinet C, Dubroca L, Lea M-A, Goldsworthy SD, Cherel Y, Duhamel G, Bonadonna F, Donnay JP (2001) Spatial distribution of foraging in female Antarctic fur seals Arctocephallus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. Mar Ecol Prog Ser 219:251–264CrossRefGoogle Scholar
  8. Liebsch N, Wilson RP, Bornemann H, Adelung D, Plötz J (2007) Mouthing off about fish capture: jaw movement in pinnipeds reveals the real secrets of ingestion. Deep-Sea Res II 54:256–269. doi:10.1016/j.dsr2.2006.11.014 CrossRefGoogle Scholar
  9. Naito Y (2007) A new animal-borne digital still camera (DSL): Its functions and applications to marine mammal science. In: Marshall G (ed) Proceedings of the 2007 animal-borne imaging symposium. National Geographic Society, Washington D.C., pp 201–207Google Scholar
  10. NMFS (2008) Recovery plan for the Steller sea lion (Eumetopias jubatus). Revision. National Marine Fisheries Service, Silver Spring, p 325Google Scholar
  11. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  12. Ropert-Coudert Y, Kato A (2006) Are stomach temperature recorders a useful tool for determining feeding activity? Polar Biosci 20:63–72Google Scholar
  13. Ropert-Coudert Y, Kato A, Liebsch N, Wilson RP, Müller G, Baubet E (2004) Monitoring jaw movements: a cue to feeding activity. Game Wildl Sci 20:1–19Google Scholar
  14. Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging little penguins. Mar Biol 149:139–148. doi:10.1007/s00227-005-0188-x CrossRefGoogle Scholar
  15. Sato K, Daunt F, Watanuki Y, Takahashi A, Wanless S (2008) A new method to quantify prey acquisition in diving seabirds using wing stroke frequency. J Exp Biol 211:58–65. doi:10.1242/jeb.009811 CrossRefPubMedGoogle Scholar
  16. Suzuki I, Naito Y, Folkow LP, Miyazaki N, Blix AS (2009) Validation of a device for accurate timing of feeding events in marine animals. Polar Biol 32:667–671. doi:10.1007/s00300-009-0596-3 CrossRefGoogle Scholar
  17. Trites AW, Larkin PA (1996) Changes in the abundance of Steller sea lions (Eumetopias jubatus) in Alaska from 1956 to 1992: how many were there? Aquatic Mammals 22:153–166Google Scholar
  18. Wilson RP, Cooper J, Plotz J (1992) Can we determine when marine endotherms feed? A case study with seabirds. J Exp Biol 167:267–275Google Scholar
  19. Wilson RP, Steinfurth A, Ropert-Coudert Y, Kato A, Kurita M (2002) Lip-reading in remote subjects: an attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals using penguins as a model. Mar Biol 140:17–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Morgane Viviant
    • 1
  • Andrew W. Trites
    • 2
  • David A. S. Rosen
    • 2
  • Pascal Monestiez
    • 3
  • Christophe Guinet
    • 1
  1. 1.Centre d’Etudes Biologiques de Chizé, CNRSVilliers en BoisFrance
  2. 2.Marine Mammal Research Unit, Fisheries CentreUniversity of British ColumbiaVancouverCanada
  3. 3.Institut National de la Recherche AgronomiqueUnité de Biostatistique et Processus SpatiauxAvignonFrance

Personalised recommendations