Polar Biology

, Volume 33, Issue 3, pp 407–414 | Cite as

Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach

Short Note


The usefulness of a molecular approach based on polymerase chain reaction (PCR) was investigated to identify and quantify the feeding of larval krill on zooplankton organisms in the Lazarev Sea during winter in 2006. Different primers and probes of dominant copepod species (Oithona sp., Ctenocalanus citer, copepodid stages of Metridia gerlachei and Calanoides acutus), co-occurring with larval krill under sea ice during winter, were developed for quantitative PCR (qPCR) and their species specificity was tested on target and non-target species. The qPCR results showed that larval krill were exclusively feeding on Oithona sp. This result was confirmed by microscopic analysis of stomach and gut contents of larvae from the same stations.


Krill larvae Copepod prey PCR Quantitative PCR 



This work was supported by funding from the German Ministry of Education and Science through project 03F0400A, Subproject 4 of the Lazarev Sea Krill Study (LAKRIS) Project. The LAKRIS-Project is the German contribution to the Southern Ocean-Global Ocean Ecosystem Dynamics (SO-GLOBEC) programme.


  1. Bucklin A (2000) Methods for population genetic analyses of zooplankton. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES Zooplankton methodology manual. Academic Press, London, pp 533–570 (Chap 11)CrossRefGoogle Scholar
  2. Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, Färber-Lorda J, Pierson JJ (2007) DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res 29:483–493CrossRefGoogle Scholar
  3. Daly KL (1990) Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnol Oceanogr 35:1564–1576Google Scholar
  4. Daly KL (2004) Overwintering growth and development of larval Euphausia superba: an interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Res II 51:2139–2168CrossRefGoogle Scholar
  5. Durbin EG, Casa MC, Rynearson TA, Smith DC (2008) Measurement of copepod predation on nauplii using qPCR of the cytochrome oxidase I gene. Mar Biol 153:699–707CrossRefGoogle Scholar
  6. Folmer O, Black M, Hoen W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  7. Fraser FC (1936) On the development and distribution of young stages of krill (Euphausia superba). Discov Rep 24:1–192Google Scholar
  8. Frazer K (1996) Stable isotope composition (δ13C and δ15N) of larval krill, Euphausia superba, and two of its potential food sources in winter. J Plankton Res 18:1413–1426CrossRefGoogle Scholar
  9. Garrison DL, Buck KR (1989) The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula Regions. Polar Biol 10:211–219CrossRefGoogle Scholar
  10. Garrison DL, Close AR (1993) Winter ecology of the sea ice biota in Weddell Sea pack ice. Mar Ecol Prog Ser 96:17–31CrossRefGoogle Scholar
  11. Hagen W, Kattner G, Terbrüggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104CrossRefGoogle Scholar
  12. Hopkins TL, Torres JJ (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep Sea Res 36:543–560CrossRefGoogle Scholar
  13. Karlson K, Båmstedt U (1994) Planktivorous predation on copepods: evaluation of mandible remains in predator guts as a quantitative estimate of predation. Mar Ecol Prog Ser 108:79–89CrossRefGoogle Scholar
  14. Lee LG, Connell CR, Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21:3761–3766CrossRefPubMedGoogle Scholar
  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner A, Gerber S, Ginhart AW, Gross S, Grunmann S, Hermann S, Jost R, König A, Liss T, May M, Reichel B, Strehlow R, Stamatakis AP, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 25:1363–1371CrossRefGoogle Scholar
  16. Martin DL, Ross RM, Quetin LB, Murray AE (2006) Molecular approach (PCR-DGGE) to diet analysis in young Antarctic Krill Euphausia superba. Mar Ecol Prog Ser 319:155–165CrossRefGoogle Scholar
  17. Meyer B, Oettl B (2005) Effects of short term starvation on composition and metabolism of larval Antarctic krill, Euphausia superba. Mar Ecol Prog Ser 292:263–270CrossRefGoogle Scholar
  18. Meyer B, Atkinson A, Stübing D, Oettl B, Hagen W, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill (Euphausia superba) at the onset of winter—I. Furcilia III larvae. Limnol Oceanogr 47:943–952Google Scholar
  19. Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Olariaga A, Bathmann U (2009) Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol Oceanogr 54:1595–1614Google Scholar
  20. Nejstgaard JC, Frischer ME, Raule CL, Gruebel R, Kohlberg KE, Verity PG (2003) Molecular detection of algal prey in copepod guts and fecal pellets. Limnol Oceanogr Methods 1:29–38Google Scholar
  21. Nejstgaard JC, Frischer ME, Simonelli P, Troedsson C, Brakel M, Adiyaman F, Sazhin AF, Artigas LF (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153:565–577CrossRefGoogle Scholar
  22. Passmore AJ, Jarman SN, Swadling KM, Kawaguchi S, McCinn A, Nicol S (2006) DNA as a dietary biomarker in Antarctic Krill, Euphausia superba. Mar Biotech 8:686–696CrossRefGoogle Scholar
  23. Quetin LB, Ross RM, Fritsen CH, Vernet M (2007) Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct Sci 19:253–266CrossRefGoogle Scholar
  24. Schmidt K, Atkinson A, Petzke KJ, Voss M, Pond DW (2006) Protozoans as food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51:2409–2427CrossRefGoogle Scholar
  25. Schnack-Schiel SB, Dieckmann GS, Gradinger R, Melnikov LA, Spindler N, Thomas DN (2001) Meiofauna in sea ice of the Weddell Sea (Antarctica). Polar Biol 24:724–728CrossRefGoogle Scholar
  26. Siegel V (2005) Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biol 29:1–22CrossRefGoogle Scholar
  27. Stübing S, Hagen W (2003) Fatty acid biomarker ratios: suitable trophic indicators in Antarctic euphausiids? Mar Biol 26:774–782Google Scholar
  28. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641CrossRefPubMedGoogle Scholar
  29. Troedsson C, Frischer ME, Nejstgaard JC, Thomspson EM (2007) Molecular quantification of differential ingestion and particle trapping rates by the appendicularian Oikopleura dioica as a function of prey size and shape. Limnol Oceanogr 52:416–427Google Scholar
  30. Troedsson C, Simonelli P, Nägele V, Nejstgaard JC, Frischer ME (2009) Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar Biol 156:253–259CrossRefGoogle Scholar
  31. Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples—a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12CrossRefPubMedGoogle Scholar
  32. Vestheim H, Edvardsen B, Kaartvedt S (2005) Assessing feeding of a carnivorous copepod using species-specific PCR. Mar Biol 147:381–385CrossRefGoogle Scholar
  33. Wickham SA, Berninger UG (2007) Krill larvae, copepods and the microbial food web: interactions during the Antarctic fall. Aquat Microb Ecol 46:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kerstin Töbe
    • 1
  • Bettina Meyer
    • 1
  • Veronica Fuentes
    • 2
  1. 1.Scientific Division Polar Biological OceanographyAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institut de Ciéncies del Mar (CSIC)BarcelonaSpain

Personalised recommendations