Polar Biology

, Volume 33, Issue 3, pp 293–304 | Cite as

The role of the chaetognath Sagitta gazellae in the vertical carbon flux of the Southern Ocean

  • Ricardo Giesecke
  • Humberto E. González
  • Ulrich Bathmann
Original Paper


Chaetognaths are among the most abundant predators in the Southern Ocean and are potentially important components in the biological carbon pump due to the production of large, fast-sinking fecal pellets. In situ S. gazellae abundance, fecal pellet production, sinking rates, carbon content, and vertical carbon fluxes were measured at the Lazarev Sea between December 2005 and January 2006. Sagitta gazellae produce fecal pellets that sink at speeds of 33–600 m day−1 and have carbon contents of 0.01–0.8 mg C pellet−1. Vertical carbon flux was later compared with the total carbon flux measured at 360 m depth at the study area. Rough estimates using published seasonal abundance of S. gazellae indicate that, at 360 m depth in the Lazarev Sea, this specie may contribute 12 and 5% of the total vertical carbon flux in winter (ice-covered) and summer (ice-free), respectively. Thus, the role of chaetognaths in the downward transport of organic matter may be far more important than previously thought.


Vertical carbon flux Chaetognaths Sagitta gazellae Antarctica 



The authors would like to thank the crew and scientists of R/V ‘Polarstern’ for their help and support during the Lazarev Sea Krill Study (LAKRIS) project. To Dr. V. Siegel for providing RMT 1 + 8 zooplankton samples. The participation of RG was funded by a CONICYT doctoral fellowship, a DAAD fellowship and a POGO-IOC-SCOR travel-fellowship. Additional support from FONDAP-COPAS grant No. 15010007 and the Instituto Antártico Chileno made possible the post-cruise analysis of zooplankton samples grant Gabinete.


  1. Bajkov AD (1935) How to estimate the daily food consumption of fish under natural conditions. Trans Am Fish Soc 65:288–289CrossRefGoogle Scholar
  2. Besiktepe S, Dam HG (2002) Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Mar Ecol Prog Ser 229:151–164CrossRefGoogle Scholar
  3. Boyer SN (1994) Aerobic and anaerobic degradation and mineralization of 14C-Chitin by water column and sediment inocula of the York River Estuary, Virginia. Appl Environ Microbiol 60(1):174–179PubMedGoogle Scholar
  4. Bruland KW, Silver MW (1981) Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar Biol 63:295–300CrossRefGoogle Scholar
  5. Butler M, Dam HG (1994) Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes. Mar Ecol Prog Ser 114:81–91CrossRefGoogle Scholar
  6. Cadée GC, González HE, Schnack-Schiel SB (1992) Krill diet affects faecal string settling. Polar Biol 12:75–80Google Scholar
  7. Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40(6):1042–1049Google Scholar
  8. Connolly JP, Coffin RB (1995) Model of carbon cycling in planktonic food webs. J Environ Eng 121:682–690CrossRefGoogle Scholar
  9. Cosper TC, Reeve MR (1975) Digestive efficiency of the chaetognath Sagitta hispida Conant. J Exp Mar Biol Ecol 17:33–38CrossRefGoogle Scholar
  10. Crelier AM, Daponte MC (2004) Chaetognatha of the Brazil-Malvinas (Falkland) confluence: distribution and associations. Iheringia Ser Zool 94(4):337–348Google Scholar
  11. David PM (1955) The distribution of Sagitta gazellae Ritter-Zahony. Disc Rep 27:235–278Google Scholar
  12. David PM (1958) The distribution of the Chaetognatha of the Southern Ocean. Disc Rep 29:200–229Google Scholar
  13. Dilling L, Alldredge AL (1993) Can chaetognath fecal pellets contribute to carbon flux? Mar Ecol Prog Ser 92:51–58CrossRefGoogle Scholar
  14. Donnelly J, Torres JJ, Hopkins TL et al (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183CrossRefGoogle Scholar
  15. Falk-Petersen S, Sargent JR, Lønne OJ et al (1999) Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biol 21:32–47CrossRefGoogle Scholar
  16. Feigenbaum DL (1982) Feeding by the chaetognath, Sagitta elegans, at low temperature in Vineyard Sound, Massachusetts. Limnol Oceanogr 27:699–706Google Scholar
  17. Fischer G, Futterer D, Gersonde R et al (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428CrossRefGoogle Scholar
  18. Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and oceanic compounds through the oceanic water column. Prog Oceanogr 16:147–194CrossRefGoogle Scholar
  19. Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17:293–296CrossRefGoogle Scholar
  20. Froneman PW, Pakhomov EA (1998) Trophic importance of the chaetognaths Eukrohnia hamata and Sagitta gazellae in the pelagic subsystem of the Prince Edward Islands in late austral summer 1996. Polar Biol 19:242–249CrossRefGoogle Scholar
  21. Froneman PW, Pakhomov EA, Perissinotto R et al (1998) Community structure and predation impact of two chaetognath species, Sagitta gazellae and Eukrohnia hamata in the vicinity of the Prince Edward Archipelago (Southern Ocean). Mar Biol 131:95–101CrossRefGoogle Scholar
  22. González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar Ecol Prog Ser 113:233–246CrossRefGoogle Scholar
  23. Granata TC, Dickey TD (1991) The fluid mechanics of copepod feeding in a turbulent flow: a theoretical approach. Prog Oceanogr 26:243–261CrossRefGoogle Scholar
  24. Hagen W (1988) On the significance of lipids in Antarctic zooplankton. Ber Polar Forsch 49:1–129Google Scholar
  25. Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebr Reprod Dev 36:25–34Google Scholar
  26. Harding GCH (1973) Decomposition of marine copepods. Limnol Oceanogr 18:670–673Google Scholar
  27. Honjo S, Roman MR (1978) Marine copepod fecal pellets: production, preservation and sedimentation. J Mar Res 36:45–57Google Scholar
  28. Hosie GW, Schultz MB, Kitchener JA, Cochran et al (2000) Macrozooplankton community structure off east Antarctica (80–150°E) during the austral summer of 1995/1996. Deep Sea Res II 47:2437–2463CrossRefGoogle Scholar
  29. Ikeda T, Kirkwood R (1989) Metabolism and elemental composition of a giant chaetognath Sagitta gazellae from the Southern Ocean. Mar Biol 100:261–267CrossRefGoogle Scholar
  30. Kehayias G, Lykakis J, Fragopoulu N (1996) The diets of the chaetognaths Sagitta enfata, S. serratodentata atlantica and S. bipunctata at different seasons in Eastern Mediterranean coastal waters. ICES J Mar Sci 53:837–846CrossRefGoogle Scholar
  31. Kimmerer WJ (1984) Selective predation and its impact on prey of Sagitta enflata (Chaetognatha). Mar Ecol Prog Ser 15:55–62CrossRefGoogle Scholar
  32. Komar PD, Morse AP, Small LF et al (1981) An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol Oceanogr 26:172–180CrossRefGoogle Scholar
  33. Krause M (1981) Vertical distribution of faecal pellets during FLEX ’76. Helgol Meeresunters 34:313–327CrossRefGoogle Scholar
  34. Kruse S, Bathmann U, Brey T (2009) Meso- and bathypelagic distribution and abundance of chaetognaths in the Atlantic sector of the Southern Ocean. Polar Biol. doi: 10.1007/s00300-009-0632-3
  35. Lampitt RS, Noji T, von Bodungen B (1990) What happens to zooplankton faecal pellets? Implications for material flux. Mar Biol 104:15–23CrossRefGoogle Scholar
  36. Legendre L, Michaud J (1998) Flux of biogenic carbon in oceans: size dependent regulation by pelagic food webs. Mar Ecol Prog Ser 164:1–11CrossRefGoogle Scholar
  37. Lukáč D (2006) Community structure and predation impact of carnivorous macrozooplankton in the Polar Frontal Zone (Southern Ocean), with particular reference to chaetognaths, Masters thesis, Rhodes University, 135 pGoogle Scholar
  38. Nagasawa S (1985) The digestive efficiency of the chaetognath Sagitta crassa Tokioka, with observations on the feeding process. J Exp Mar Biol Ecol 87:271–282CrossRefGoogle Scholar
  39. Noji TT, Estep KW, MacIntyre F et al (1991) Image analysis of fecal material grazed upon by three species of copepods: evidence for coprorhexy, coprophagy and coprochaly. J Mar Biol Assoc UK 71:465–480CrossRefGoogle Scholar
  40. Øresland V (1987) Feeding of the chaetognaths Sagitta elegans and S. setosa at different seasons in Gullmarsfjorden, Sweden. Mar Ecol Prog Ser 39:69–79CrossRefGoogle Scholar
  41. Øresland V (1990) Feeding and predation impact of the chaetognath Eukrohnia hamata in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 63:201–209CrossRefGoogle Scholar
  42. Øresland V (1995) Winter population structure and feeding of the chaetognath Eukrohnia hamata and the copepod Euchaeta antarctica in Gerlache Strait, Antarctic Peninsula. Mar Ecol Prog Ser 119:77–86CrossRefGoogle Scholar
  43. Øresland V (2000) Diel feeding of the chaetognath Sagitta enflata in the Zanzibar Channel, western Indian Ocean. Mar Ecol Prog Ser 193:117–123CrossRefGoogle Scholar
  44. Pakhomov EA, Froneman PW (2000) Composition and spatial variability of macroplankton and micronekton within the Antarctic Polar Frontal Zone of the Indian Ocean during austral autumn 1997. Polar Biol 23(6):410–419CrossRefGoogle Scholar
  45. Pakhomov EA, Perissinotto R, Froneman PW (1999) Predation impact of carnivorous macrozooplankton and micronekton in the Atlantic sector of the Southern Ocean. J Mar Syst 19:47–64CrossRefGoogle Scholar
  46. Pakhomov EA, Perissinotto R, McQuaid CD et al (2000) Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in the last austral summer 1993. Park 1. Ecological zonation. Deep Sea Res I 47(9):1663–1686CrossRefGoogle Scholar
  47. Ploug H, Iversen MH, Koski M (2008) Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol Oceanogr 53(2):469–476Google Scholar
  48. Priddle J, Smetacek V, Bathmann U (1992) Antarctic marine primary production, biochemical carbon cycles and climatic change. Philos Trans R Soc Lond B 338:289–297CrossRefGoogle Scholar
  49. Raymont JEG, Srinivasagam T, Rayrnont JKB (1969) Biochemical studies on marine zooplankton. VI. Investigation on Meganyctiphanes norvegica (M. Sars). Deep Sea Res 16:141–156Google Scholar
  50. Reeve MR (1970) The biology of Chaetognatha 1. Quantitative aspects of growth and egg production in Sagitta hispida. In: Steele JH (ed) Marine food chains. Oliver and Boyd, Edinburgh, pp 168–189Google Scholar
  51. Small LF, Fowler SW, Onlii MY (1979) Sinking rates of natural copepod fecal pellets. Mar Biol 51:233–241CrossRefGoogle Scholar
  52. Small LF, Fowler SW, Moore SA et al (1983) Dissolved and fecal pellet carbon and nitrogen release by zooplankton in tropical waters. Deep Sea Res 30:1199–1220CrossRefGoogle Scholar
  53. Smayda TJ (1969) Some measurements of the sinking rate of fecal pellets. Limnol Oceanogr 14:621–625CrossRefGoogle Scholar
  54. Steur L, Holland DM, Muench RD et al (2007) The warm-water ‘‘Halo’’ around Maud Rise: properties, dynamics and impact. Deep Sea Res I 54:871–896CrossRefGoogle Scholar
  55. Terazaki M (1989) Distribution of chaetognaths in the Australian sector of the Southern Ocean during the BIOMASS SIBEX cruise (KH-83–4). Proc NIPR Symp Polar Biol 2:51–60Google Scholar
  56. Terazaki M, Wada M (1988) Occurrence of large numbers of carcasses of the large, grazing copepod Calanus cristatus from the Japan Sea. Mar Biol 97:177–183CrossRefGoogle Scholar
  57. Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:75–102CrossRefGoogle Scholar
  58. Turner JT, Ferrante JG (1979) Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29:670–677CrossRefGoogle Scholar
  59. Urban-Rich J, Hansell DA, Roman MR (1998) Analysis of copepod fecal pellet carbon using a high temperature combustion method. Mar Biol Prog Ser 171:199–208CrossRefGoogle Scholar
  60. Uye S, Kaname K (1994) Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J Oceanogr 50:43–49CrossRefGoogle Scholar
  61. Wefer G, Fischer G, Fuetterer D et al (1988) Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res 35:891–898CrossRefGoogle Scholar
  62. Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597–613CrossRefGoogle Scholar
  63. Wefer G, Fischer G, Füetterer D et al (1990) Particle sedimentation and productivity in Antarctic waters of the Atlantic sector. In: Bleil U, Thiede J (eds) Geological history of polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 363–379Google Scholar
  64. Wilson SE, Steinberg DK, Buesseler KO (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res II 55:1636–1647CrossRefGoogle Scholar
  65. Yoon WD, Marty J-C, Sylvain D, Nival P (1996) Degradation of faecal pellets in Pegea confoederata (Salpidae, Thaliacea) and its implication in the vertical flux of organic matter. J Exp Mar Biol Ecol 203:147–177CrossRefGoogle Scholar
  66. Yoon WD, Kim SK, Han KN (2001) Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar Biol 139:923–928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ricardo Giesecke
    • 1
    • 2
  • Humberto E. González
    • 1
    • 3
    • 4
  • Ulrich Bathmann
    • 5
  1. 1.Center for Oceanographic Research in the Eastern South Pacific (COPAS), COPAS Sur-AustralUniversidad de ConcepciónConcepciónChile
  2. 2.Graduate Program in Oceanography, Department of OceanographyUniversidad de ConcepciónConcepciónChile
  3. 3.Institute of Marine Biology “Jürgen Winter”Universidad Austral de ChileValdiviaChile
  4. 4.CIEPPatagonia Ecosystems Research CenterCoyhaiqueChile
  5. 5.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations