Advertisement

Polar Biology

, Volume 33, Issue 2, pp 223–239 | Cite as

Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007

  • Marek Zajączkowski
  • Henrik Nygård
  • Else Nøst Hegseth
  • Jørgen Berge
Original Paper

Abstract

Seasonal dynamics of suspended minerals, organic matter, particulate, and dissolved organic carbon (DOC), chlorophyll, and their vertical fluxes were studied in a small Arctic fjord (Adventfjorden, Spitsbergen) from November 2006 to October 2007. The fjord was usually covered with fast ice in winter, but remained open throughout the year since 2005. The open-water winter period caused increased wave action and resuspension of organic and mineral particles. The lack of sea-ice in spring accelerated the onset of the productive season. The earlier light signal also caused an earlier appearance of mesozooplanktonic organisms, accompanied by a significant increase of the DOC pool in the water. In the cold period (winter and spring) 47% of the annual organic matter settled on the sampling site, a lot coming from the spring diatom bloom in April. Summer melt (July, August) resulted in turbid and brackish fjord surface water with stratification and increase of both suspended particles and sedimentation, causing 60% of the annual minerals and 53% of the annual organic matter to settle at the sampling site. Increased dissolved organic carbon (DOC) through sloppy feeding on the mixo- and heterotrophic protista by the abundant mesozooplankton indicated intensive secondary production, resulting in a maximum fecal pellets flux of >5 mg C m−2 day−1. A warmer climate with reduced sea-ice cover in fjords will advance the onset of the spring bloom and will also result in a larger input of turbid melt water in summer, restricting the light availability and enhancing flocculation and thereby sedimentation.

Keywords

Primary production Secondary production Carbon flux Chlorophyll Fjord Arctic 

Notes

Acknowledgments

The project under which this paper was prepared was founded both by University Centre in Svalbard and the Polish Ministry of Scientific Research and Information Technology (2T04F00630). The project was financially supported by StatoilHydro.

References

  1. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94:14485–14498CrossRefGoogle Scholar
  2. Arctic Climate Impact Assessment (2005) Cambridge University Press, CambridgeGoogle Scholar
  3. Atkinson EG, Wacasey JW (1987) Sedimentation in Arctic Canada: particulate organic carbon flux to a shallow marine benthic community in Frobisher Bay. Polar Biol 8:3–7CrossRefGoogle Scholar
  4. Bathmann UV, Noji TT, Voss M, Peinert R (1987) Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar Ecol Prog Ser 38:45–51CrossRefGoogle Scholar
  5. Bauerfeind E, Grrity C, Krumbholtz M, Ramseier RO, Voß M (1997) Seasonal variability of sediment trap collections in the Northeast Water Polynya. Part 2. Biochemical and microscopic composition of sedimenting matter. J Mar Syst 10:371–389CrossRefGoogle Scholar
  6. Berge J, Johnsen G, Nilsen F, Guliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1,000 year absence. Mar Ecol Prog Ser 303:167–175CrossRefGoogle Scholar
  7. Błachowiak-Samołyk K, Kwaśniewski S, Dmoch K, Hop H, Falk-Petersen S (2007) Trophic structure of zooplankton in the Fram Strait in spring and autumn 2003. Deep-Sea Res 54:2716–2728CrossRefGoogle Scholar
  8. Comiso JC (2003) Warming trends in the Arctic. J Clim 16:3498–3510CrossRefGoogle Scholar
  9. Comiso JC, Parkinson CL (2004) Satellite observed changes in the Arctic. Phys Today 57:38–44CrossRefGoogle Scholar
  10. Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005. doi: 10.1029/2004JC002757 CrossRefGoogle Scholar
  11. Dowdeswell JA, Cromack M (1991) Behavior of a glacier-derived suspended sediment plume in a small Arctic inlet. J Geol 99:111–123CrossRefGoogle Scholar
  12. Dyer KR (1989) Sediment processes in estuaries: future research requirements. J Geophys Res 94:327–339CrossRefGoogle Scholar
  13. Eilertsen HC, Sandberg S, Töllefsen H (1995) Photoperiodic control of diatom spore growth: a theory to explain the onset of phytoplankton blooms. Mar Ecol Prog Ser 116:303–307CrossRefGoogle Scholar
  14. Fortier M, Fortier L, Michel Ch, Legendre L (2002) Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar Ecol Prog Ser 225:1–16CrossRefGoogle Scholar
  15. Gonzalez HE (1992) The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Sea (Antarctica) and their role in particle flux. Polar Biol 12:81–91CrossRefGoogle Scholar
  16. Gonzalez HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material. Mar Ecol Prog Ser 113:233–246CrossRefGoogle Scholar
  17. Halldal P, Halldal K (1973) Phytoplankton, chlorophyll, and submarine light conditions in Kings Bay, Spitsbergen, July 1971. Norw J Bot 20:99–108Google Scholar
  18. Hegseth EN (1989) Photoadaptation in marine Arctic diatoms. Polar Biol 9:479–486CrossRefGoogle Scholar
  19. Hegseth EN (1992) Sub-ice algal assemblages of the Barents Sea: species composition, chemical composition, and growth rates. Polar Biol 12:485–496CrossRefGoogle Scholar
  20. Hegseth EN, Tverberg V (2008) Changed spring bloom timing in a Svalbard (high Arctic) fjord caused by Atlantic water inflow? Abstract. SCAR conference ‘Polar Research–Arctic and Antarctic perspectives in the International Polar Year’ in St. Petersburg, 7–11 July 2008Google Scholar
  21. Hegseth EN, Svendsen H, von Quillfeldt CH (1995) Phytoplankton in fjords and coastal waters of northern Norway: environmental conditions and dynamics of the spring bloom. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaas HP (eds) Ecology of fjords and coastal waters. Elsevier Science BV, Amsterdam, pp 45–72Google Scholar
  22. Holm-Hansen O, Rieman B (1978) Chlorophyll a determination: improvements in methodology. Oikos 30:438–447CrossRefGoogle Scholar
  23. Hop H, Pearson T, Hegseth EH, Kovacs KM, Wiencke Chr, Kwaśniewski S, Eiane K, Mehlum F, Gulliksen B, Włodarska-Kowalczuk M, Lydersen Chr, Węsławski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajączkowski M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  24. Hopcroft RR, Clarke CC, Nelson CRJ, Raskoff KA (2005) Zooplankton communities of the Arctic Canada Basin: the contribution by smaller taxa. Polar Biol 28:198–206CrossRefGoogle Scholar
  25. IPCC (2001) Climate change 2001: Impact, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the Intergovernmental Panel of Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. Jankowska K, Włodarska-Kowalczuk M, Wieczorek P (2005) Abundance and biomass of bacteria in two Arctic glacial fjords. Pol Polar Res 26:77–84Google Scholar
  27. Johannessen OM et al (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A 56:328–341CrossRefGoogle Scholar
  28. Karl DM, Christian JR, Dore JE, Letelier RM (1996) Microbiological oceanography in the region west of the Antarctic Peninsula: microbial dynamics, nitrogen cycle and carbon flux. Antarct Res Ser 70:303–332Google Scholar
  29. Keck A, Wiktor J, Hapter R, Nilsen R (1999) Phytoplankton assemblages related to physical gradients in an arctic, glacier-fed fjord in summer. ICES J Mar Sci 56:203–214CrossRefGoogle Scholar
  30. Majewski W, Zajączkowski M (2007) Benthic foraminifera in Adventfjorden, Svalbard: last 50 years of hydrographic changes. J Foraminifera Res 37:107–124CrossRefGoogle Scholar
  31. Møller EF, Thor P, Nilsen TG (2003) Production of DOC by Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets. Mar Ecol Prog Ser 262:185–191CrossRefGoogle Scholar
  32. Nielsen TG, Ottosen LD, Hansen BW (2007) Structure and function of the pelagic ecosystem in Young Sound, NE Greenland. In: Rysgaard S and Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study Young Sound. Meddr Grønland Biosci 58:88–107Google Scholar
  33. Okolodkov YB, Hapter R, Semovski SV (2000) Phytoplankton in Kongsfjorden, Spitsbergen, July 1996. Sarsia 85:1–8Google Scholar
  34. Olli K, Christian Riser ChW, Wassmann P, Ratkova T, Arashkevich E, Pasternak A (2002) Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea. J Mar Syst 38:189–204CrossRefGoogle Scholar
  35. Pasternak A, Arashkevicha E, Reigstad M, Wassmann P, Falk-Petersen S (2008) Dividing mesozooplankton into upper and lower size groups: applications to the grazing impact in the Marginal Ice Zone of the Barents Sea. Deep Sea Res II 55:2245–2256CrossRefGoogle Scholar
  36. Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2008) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559CrossRefGoogle Scholar
  37. Riser CW, Wassmann P, Reigstad M, Seuthe L (2008) Vertical flux regulation by zooplankton in the northern Barents Sea during Arctic spring. Deep-Sea Res II 55:2320–2329CrossRefGoogle Scholar
  38. Rysgaard S, Glud RN (2007) Carbon cycling and climate change: Predictions for a High Arctic marine ecosystem (Young Sound, NE Greenland). In: Rysgaard S and Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study Young Sound. Meddr Grønland Biosci 58:206–214Google Scholar
  39. Sakshaug E, Andresen K (1986) Effect of light regime upon growth rate and chemical composition of a clone of Skeletonema costatum from the Trondheimsfjord, Norway. J Plankton Res 8:619–637CrossRefGoogle Scholar
  40. Serreze MC, Walsh JE, Chapin FSIII, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  41. Sharp JH (2002) Analytical methods for total DOM pools. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier, San Diego, pp 35–58CrossRefGoogle Scholar
  42. Starr M, Himmelman JH, Therriault JC (1991) Coupling of nauplii release in barnacles with phytoplankton blooms: a parallel strategy to that of spawning in urchins and mussels. J Plankton Res 13:561–571CrossRefGoogle Scholar
  43. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analyses. Fish Res Bd Can Bull 167:1–311Google Scholar
  44. Turner JT, Levinsen H, Nielsen TG, Hansen BW (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar Ecol Prog Ser 221:209–219CrossRefGoogle Scholar
  45. Walczowski W, Piechura J (2007) Pathways of the Greenland Sea warming. Geophys Res Lett 33:1–5Google Scholar
  46. Walkusz W, Kwaśniewski S, Falk-Petersen S, Hop H, Tverberg V, Wieczorek P, Węsławski JM (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281CrossRefGoogle Scholar
  47. Wassmann P, Reigstad M, Haug T, Rudels B, Carroll ML, Hop H, Gabrielsen GW, Falk-Petersen S, Denisenko G, Arashkevich E, Slagstad D, Pavlowa O (2006) Food webs and carbon flux in the Barents Sea. Prog Oceanogr 71:232–287CrossRefGoogle Scholar
  48. Węsławski JM, Zajączkowski M, Szymelfenig M, Keck A (1999) Influence of salinity and suspended matter on benthos of an Arctic tidal flat. ICES J Mar Sci 56:194–202CrossRefGoogle Scholar
  49. Wiktor J (1999) Early spring microplankton development under fast ice covered fjords of Svalbard, Arctic. Oceanol 41:51–72Google Scholar
  50. Wiktor J, Wojciechowska K (2005) Differences in taxonomic composition of summer phytoplankton in two fjords of West Spitsbergen, Svalbard. Pol Polar Res 26:259–268Google Scholar
  51. Willis K, Cottier F, Kwaśniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54CrossRefGoogle Scholar
  52. Zajączkowska B, Zajączkowski M (1988) Quantitative microbiological survey in Hornsund, SW Spitsbergen. Reconnaissance study in summer 1985. Bull Pol Acad Sci Biol Sci 37:79–84Google Scholar
  53. Zajączkowski M (2002) On the use of sediment traps in sedimentation measurements in glaciated fjords. Pol Polar Res 23:161–174Google Scholar
  54. Zajączkowski M, Włodarska-Kowalczuk M (2007) Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard) I. Flux, deposition, and sediment dynamics. Estuar Coast Shelf Sci 74:285–296CrossRefGoogle Scholar
  55. Zajączkowski M (2008) Sediment supply and fluxes in glacial and outwash fjords: Kongsfjorden and Adventfjorden, Svalbard. Pol Polar Res 29:59–72Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marek Zajączkowski
    • 1
  • Henrik Nygård
    • 2
    • 3
  • Else Nøst Hegseth
    • 3
  • Jørgen Berge
    • 2
  1. 1.Institute of Oceanology, Polish Academy of SciencesSopotPoland
  2. 2.University Centre in SvalbardLongyearbyenNorway
  3. 3.The Norwegian College of Fishery ScienceUniversity of TromsøTromsøNorway

Personalised recommendations