Polar Biology

, Volume 33, Issue 2, pp 193–202 | Cite as

DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory

  • Andrew R. Mahon
  • Daniel J. Thornhill
  • Jon L. Norenburg
  • Kenneth M. Halanych
Original Paper

Abstract

With threats to biodiversity posed by anthropogenic impacts and global climate change, characterization of existing flora and fauna is increasingly important, but continues to focus predominantly on easily studied taxa. In the Southern Ocean, levels of species richness remain relatively unexplored due to remoteness and difficulties of sampling the region. Nemerteans (proboscis worms; ribbon worms) are unusually abundant and occasionally conspicuous in the Antarctic region. Despite being routinely collected, difficulties in preserving voucher material, morphological limitations, and shortage of taxonomic expertise have hindered our understanding of nemertean diversity. To assess patterns of diversity, we examined a fragment of the mitochondrial 16S rRNA gene from larval and adult nemerteans (n = 192) from 53 sites along the western Antarctic Peninsula. We found 20 distinct lineages having an uncorrected genetic distance (p) greater than 5% to the nearest sister taxon or group, 19 of which have not been genetically characterized in previous studies. Additionally, the putatively dominant adult species in the region, Parborlasia corrugatus, was found to comprise only 4.3% of larvae sampled (n = 3 out of 69 samples from 12 locations). Of 47 nemertean species recorded from Antarctic waters, 20 are heteronemerteans and therefore could have a pelagic pilidium larval phase. These results suggest that Antarctic biodiversity is underestimated, and that unknown species of nemerteans await description from Southern Ocean waters.

Keywords

Antarctica Biodiversity Cryptic species 16S Larvae 

Supplementary material

300_2009_696_MOESM1_ESM.doc (330 kb)
Supplementary material 1 (DOC 330 kb)

References

  1. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14Google Scholar
  2. Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic Benthos. Annu Rev Ecol Syst 38:129–154CrossRefGoogle Scholar
  3. Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proc Natl Acad Sci USA 96:992–995CrossRefPubMedGoogle Scholar
  4. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond [Biol] 360:1935–1943CrossRefGoogle Scholar
  5. Bosch I, Beauchamp KA, Steele E, Pearse JS (1987) Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173:126–135CrossRefGoogle Scholar
  6. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114Google Scholar
  7. Dawson EW (1969) Nemertea. Antarctic Map Folio Ser, Folio 11:18–21Google Scholar
  8. Dawson EW (1971) Nemertea. Coll Repr NZ Oceanogr Inst 289:1–9Google Scholar
  9. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefPubMedGoogle Scholar
  10. Friedrich H (1979) Nemertini. In: Seidel F (ed) Morphogenese der Tiere. Gustav Fischer, Jena, vol 3. D5-1, pp 1–136Google Scholar
  11. García Raso JE, Manjón-Cabeza ME, Ramos A, Olasi I (2005) New record of Lithodidae (Crustacea, Decapoda, Anomura) from the Antarctic (Bellingshausen Sea). Polar Biol 28:642–646CrossRefGoogle Scholar
  12. Gibson R (1985a) The need for a standard approach to taxonomic descriptions of nemerteans. Am Zool 25:5–14Google Scholar
  13. Gibson R (1985b) Antarctic nemerteans: Heteronemertea—descriptions of new taxa, reappraisals of the systematic status of existing species and a key to the heteronemerteans recorded south of latitude 50°S. Zool J Linnean Soc 83:95–227CrossRefGoogle Scholar
  14. Gibson R (1995) Nemertean genera and species of the world. An annotated checklist of original names and description citations, synonyms, current taxonomic status, habitats and recorded zoogeographic distribution. J Nat His 29:271–562CrossRefGoogle Scholar
  15. Gibson R, Crandall FB (1989) The genus Amphiporus Ehrenberg (Nemertea, Enopla, Monostiliferoidea). Zool Scripta 18:453–470CrossRefGoogle Scholar
  16. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  17. Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci 16:11–16CrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond [Biol] 270:313–321CrossRefGoogle Scholar
  20. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312CrossRefPubMedGoogle Scholar
  21. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Giekes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, The Netherlands, pp 135–139Google Scholar
  22. Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181CrossRefGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  24. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered 99:137–148CrossRefPubMedGoogle Scholar
  25. Kajihara H, Chernyshev AV, Sun SC, Sundberg P, Crandall FB (2008) Checklist of nemertean genera and species published between 1995 and 2007. Spec Diver 13:245–274Google Scholar
  26. Maddison WP, Maddison DR (2000) MacClade version 4.0. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  27. Mahon AR, Arango CP, Halanych KM (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe. Mar Biol 155:315–323CrossRefGoogle Scholar
  28. Mayhew PJ, Jenkins GB, Benton TG (2008) A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc R Soc Lond [Biol] 275:47–53CrossRefGoogle Scholar
  29. Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726CrossRefGoogle Scholar
  30. Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from Satellite sea surface temperature data. J Geophys Res 104:3059–3073Google Scholar
  31. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2007) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scripta 37:93–108Google Scholar
  32. Norenburg JL, Stricker SA (2001) Phylum Nemertea. In: Young CM, Rice M, Sewell MA (eds) Atlas of marine invertebrate larvae. Academic Press, New York, pp 163–177Google Scholar
  33. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  34. Palumbi SR, Martin AP, Romano S, McMillan WO, Stice L, Grabowski G (1991) The Simple Fool’s Guide to PCRSpecial Publication of the Department of Zoology. University of Hawaii, HonoluluGoogle Scholar
  35. Pearse JS, McClintock JB, Bosch I (1991) Reproduction of Antarctic benthic marine invertebrates–tempos, modes, and timing. Am Zool 31:65–80Google Scholar
  36. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630CrossRefGoogle Scholar
  37. Rogers AD, Clarke A, Peck LS (1998) Population genetics of the Antarctic heteronemertean Parbolasia corrugatus from the South Orkney Islands. Mar Biol 131:1–13CrossRefGoogle Scholar
  38. Schreeve RS, Peck LS (1995) Distribution of pelagic larvae of benthic marine invertebrates in the Bellinghausen Sea. Polar Biol 15:369–374Google Scholar
  39. Schwartz ML, Norenburg JL (2001) Can we infer heteronemertean phylogeny from available morphological data? Hydrobiologia 456:165–174CrossRefGoogle Scholar
  40. Schwartz M, Norenburg JL (2005) Three new species of Micrura (Nemertea: Heteronemertea) and a new type of heteronemertean larva from the Caribbean Sea. Caribbean J Sci 41:528–543Google Scholar
  41. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  42. Singh JH (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82:638–647Google Scholar
  43. Stanwell-Smith D, Peck LS, Clarke A, Murray AWA, Todd CD (1999) The distribution, abundance and seasonality of pelagic marine invertebrate larvae in the maritime Antarctic. Philos Trans R Soc Lond [Biol] 354:471–484CrossRefGoogle Scholar
  44. Strand M, Sundberg P (2005) Delimiting species in the hoplonemertean genus Tetrastemma (phylum Nemertea): morphology is not concordant with phylogeny as evidenced from mtDNA sequences. Biol J Linnean Soc 86:201–212CrossRefGoogle Scholar
  45. Sundberg P, Turbeville JM, Lindh S (2001) Phylogenetic relationships among higher nemertean taxa inferred from18S rDNA sequences. Mol Phylogenet Evol 20:327–334CrossRefPubMedGoogle Scholar
  46. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods) Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  47. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  48. Thatje S, Arntz WE (2004) Antarctic reptant decapods: more than a myth? Polar Biol 27:195–201CrossRefGoogle Scholar
  49. Thatje S, Fuentes V (2003) First record of anomuran and brachyuran larvae (Crustacea: Decapoda) from Antarctic waters. Polar Biol 26:279–282Google Scholar
  50. Thatje S, Hillenbrand C-D, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692CrossRefPubMedGoogle Scholar
  51. Thollesson M, Norenburg JL (2003) Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc R Soc Lond [Biol] 270:407–415CrossRefGoogle Scholar
  52. Thornhill DJ, Mahon AR, Norenberg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefPubMedGoogle Scholar
  53. Turbeville JM (2002) Progress in nemertean biology. Integr Comp Biol 42:692–703CrossRefGoogle Scholar
  54. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Climate Change 60:243–274CrossRefGoogle Scholar
  55. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5CrossRefPubMedGoogle Scholar
  56. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  57. Wilson NG, Schrodl M, Halanych KM (2009) Ocean barriers and glaciation evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrew R. Mahon
    • 1
    • 2
    • 5
  • Daniel J. Thornhill
    • 1
    • 3
  • Jon L. Norenburg
    • 4
  • Kenneth M. Halanych
    • 1
  1. 1.Department of Biological SciencesAuburn UniversityAuburnUSA
  2. 2.Department of Biological Sciences, Center for Aquatic ConservationThe University of Notre DameNotre DameUSA
  3. 3.Department of BiologyBowdoin CollegeBrunswickUSA
  4. 4.Smithsonian InstitutionWashingtonUSA
  5. 5.Department of Biological Sciences, Center for Aquatic ConservationUniversity of Notre DameNotre DameUSA

Personalised recommendations