Polar Biology

, Volume 33, Issue 1, pp 71–83

Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance

  • Laura Selbmann
  • Laura Zucconi
  • Serena Ruisi
  • Martin Grube
  • Massimiliano Cardinale
  • Silvano Onofri
Original Paper


Antarctic habitats harbour yet unexplored niches for microbial communities. Among these, lichen symbioses are very long-living and stable microenvironments for bacterial colonization. In this work, we present a first assessment of the culturable fraction of bacteria associated with Antarctic lichens. A phylogenetic analysis based on 16S rRNA gene sequence of 30 bacterial strains isolated from five epilithic lichens belonging to four species (Lecanora fuscobrunnea, Umbilicaria decussata, Usnea antarctica, Xanthoria elegans) shows that these represent the main bacterial lineages Actinobacteria, Firmicutes, Proteobacteria and Deinococcus-Thermus. Within the Actinomycetales, two strains group in the genera Arthrobacter and Knoellia, respectively. Most of the other Actinobacteria form well-supported groups, but could be assigned with certainty only at the family level, and one is in isolated position in the Mycobacteriaceae. The strains in Firmicutes and Proteobacteria belong to the genera Paenibacillus,Bacillus and Pseudomonas, which were already reported from lichen thalli. Some genera such as Burkholderia and Azotobacter, reported in the literature as also associated with lichens, have not been detected in this study. One strain represents the first record of Deinococcus in epilithic lichens; it is related to the species Deinococcus alpinitundrae from Alpine environments and may represent a new species. Further separated and well-supported clades indicate the presence of possibly new entities. Some of the examined strains are related to known psychrophilic bacteria isolated from ice and other extreme environments, others with bacteria distributed worldwide even in temperate climates. Most of the strains tested were able to grow at low temperatures, but tolerated a wider range of temperature. Ecological and evolutionary implications of these lichen-associated bacteria are discussed.


Antarctica Bacteria Extreme conditions Lichens Microbial associations SSU rDNA 


  1. Ahmadjian V (1995) Lichens are more important than you think. BioScience 45:123–124Google Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35CrossRefPubMedGoogle Scholar
  4. Battista JR, Earl AM, Park MJ (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365CrossRefPubMedGoogle Scholar
  5. Boustie J, Grube M (2005) Lichens-a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287CrossRefGoogle Scholar
  6. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258CrossRefPubMedGoogle Scholar
  7. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495CrossRefPubMedGoogle Scholar
  8. Cardinale M, de Castro JV Jr, ller HM, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71CrossRefPubMedGoogle Scholar
  9. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517CrossRefPubMedGoogle Scholar
  10. Caton TM, Witte LR, Nguyen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462CrossRefPubMedGoogle Scholar
  11. Christner BC (2002) Recovery of bacteria from glacial and subglacial environments. Thesis, Department of Microbiology, Byrd Polar Research Center, Ohio State UniversityGoogle Scholar
  12. Davies J, Wang H, Taylor T, Warabi K, Huang X-H, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236CrossRefPubMedGoogle Scholar
  13. de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 215:3858–3867CrossRefGoogle Scholar
  14. Delorme S, Lemanceau P, Christen R, Corberand T, Meyer JM, Gardan L (2002) Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523PubMedGoogle Scholar
  15. De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190CrossRefPubMedGoogle Scholar
  16. Elo S, Suominen I, Kampfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K (2001) Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545PubMedGoogle Scholar
  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791CrossRefGoogle Scholar
  18. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947PubMedCrossRefGoogle Scholar
  19. Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365CrossRefPubMedGoogle Scholar
  20. Friedmann EI (1982) Endolithic microrganisms in the Antarctic cold desert. Science 215:1045–1053CrossRefPubMedGoogle Scholar
  21. García de Castro A, Bredholt H, Strøm AR, Tunnacliffe A (2000) Anhydrobiotic engineering of gram-negative bacteria. Appl Environ Microbiol 66(9):4142–4144CrossRefPubMedGoogle Scholar
  22. Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495CrossRefPubMedGoogle Scholar
  23. Gonzáles I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415CrossRefGoogle Scholar
  24. Grube M, Cardinale M, Vieira de Castro J, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J. doi:10.1038/ismej.2009.63
  25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  26. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefPubMedGoogle Scholar
  27. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria. Occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561PubMedGoogle Scholar
  28. Henkel PA, Plotnikova TT (1973) Nitrogen-fixing bacteria in lichens. Izv Akad Nauk SSSR Ser Biol 1973:807–813Google Scholar
  29. Henkel PA, Yuzhakova LA (1936) Nitrogen-fixing bacteria in lichens. Izv Biol Inst Permsk Gos Univ 10:9–10Google Scholar
  30. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645CrossRefPubMedGoogle Scholar
  31. Jobb GA, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18CrossRefPubMedGoogle Scholar
  32. Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490Google Scholar
  33. Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  34. Lee SD, Park SK, Yun YW, Lee DW (2008) Saxeibacter lacteus gen. nov., sp. nov., an actinobacterium isolated from rock. Int J Syst Evol Microbiol 58:906–909CrossRefPubMedGoogle Scholar
  35. Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086CrossRefPubMedGoogle Scholar
  36. Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512CrossRefPubMedGoogle Scholar
  37. Loveland-Curtze J, Sheridan PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171:355–363CrossRefPubMedGoogle Scholar
  38. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940CrossRefPubMedGoogle Scholar
  39. Mannisto MK, Schumann P, Rainey FA, Kampfer P, Tsitko I, Tiirola MA, Salkinoja-Salonen MS (2000) Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50:1731–1739PubMedGoogle Scholar
  40. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  41. McKay CP, Friedmann I (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25CrossRefPubMedGoogle Scholar
  42. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
  43. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  44. Onofri S, Selbmann L, Zucconi L, de Hoog GS, de los Rios A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Netherlands, pp 735–757CrossRefGoogle Scholar
  45. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Studies in polar research, Cambridge University Press, CambridgeGoogle Scholar
  46. Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  47. Peix A, Rivas R, Santa-Regina I, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C, Velazquez E (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850CrossRefPubMedGoogle Scholar
  48. Pirozynsky AH, Malloch DW (1975) The origin of land plants. A matter of mycotrophism. Biosystems 6:153–154CrossRefGoogle Scholar
  49. Reeb V, Lutzoni F, Rouxb C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060CrossRefPubMedGoogle Scholar
  50. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  51. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefPubMedGoogle Scholar
  52. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  53. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  54. Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643CrossRefPubMedGoogle Scholar
  55. Shravage BV, Dayananda KM, Patole MS, Shouche YS (2007) Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol Res 162:15–25CrossRefPubMedGoogle Scholar
  56. Siebert J, Hirsch P (1988) Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biol 9:37–44CrossRefPubMedGoogle Scholar
  57. Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  58. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  59. Wang Y, Ogawa M, Fukuda K, Miyamoto H, Taniguchi H (2006) Isolation and identification of mycobacteria from soils at an illegal dumping site and landfills in Japan. Microbiol Immunol 50:513–524PubMedGoogle Scholar
  60. Warmink JR, Nazir R, van Elsas JD (2008) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312CrossRefGoogle Scholar
  61. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  62. Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504CrossRefPubMedGoogle Scholar
  63. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020CrossRefPubMedGoogle Scholar
  64. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Laura Selbmann
    • 1
  • Laura Zucconi
    • 1
  • Serena Ruisi
    • 1
  • Martin Grube
    • 2
  • Massimiliano Cardinale
    • 3
  • Silvano Onofri
    • 1
  1. 1.DECOSUniversità degli Studi della TusciaViterboItaly
  2. 2.Institute of Plant SciencesKarl-Franzens-University GrazGrazAustria
  3. 3.Institute for Environmental BiotechnologyGraz University of TechnologyGrazAustria

Personalised recommendations