Polar Biology

, 33:41 | Cite as

Phylogenetic relationships of the endemic Antarctic benthic hydroids (Cnidaria, Hydrozoa): what does the mitochondrial 16S rRNA tell us about it?

  • Álvaro L. Peña Cantero
  • Vicente Sentandreu
  • Amparo Latorre
Original Paper


Hydroidolinan hydrozoans are widely represented in the benthic Antarctic ecosystem, mainly by some endemic and putative monophyletic groups, never included in molecular phylogenetic analyses. 38 partial sequences of the mitochondrial 16S rRNA gene were obtained for 38 species belonging to 14 families (six anthoathecates and eight leptothecates) and 20 genera (7 anthoathecates and 13 leptothecates). These sequences were combined with 108 additional sequences retrieved from the GenBank to investigate both the hypothetical monophyletism and the phylogenetic relationships of those endemic Antarctic groups; the potential use of the marker for barcoding was also investigated. Our results uphold the monophyly of some important hydroidolinan groups, such as the superfamily Plumularioidea (together with all its families, including Schizotrichidae, fam. nov.) and the Aplanulata. Concerning the Antarctic endemic groups, most results as monophyletic (Oswaldella, Schizotricha and Staurotheca), some genera form part of the expectable groups (e.g. Abietinella, located into the monophyletic Zygophylacinae clade) and, finally, others have shown a surprising position (e.g. Stegella, closely related to Lafoeinae, or Billardia and Stegopoma, allied with Hebellidae). Finally, our study has shown the utility of the marker to recognize the Antarctic species considered, but the low genetic divergence in some of the most important Antarctic groups suggests being careful when using it for DNA barcoding in the case of the original Antarctic hydroid fauna.


Southern Ocean Benthos New family Phylogeny Monophyly 



We would like to thank those persons that in one way or another help us with this study, in particular Marc Ojeda, Andrés Laguna, Regina Antoni and Araceli Lamelas. The studied material was collected during the Spanish Antarctic benthic campaigns Bentart 2003 and Bentart 2006 funded by the Ministerio de Ciencia y Teconología (MCYT) of Spain (Ref. REN2003-01881/ANT and GLC2004-01856/ANT) and during a biodiversity survey of the western Ross Sea and Balleny Islands in 2004 undertaken by the National Institute of Water and Atmospheric Research and financed by the New Zealand Ministry of Fisheries. The study was partly funded by the Universitat de València (Ref. UV-AE-20050207).


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  2. Andriashev AP (1964) Obzor fauny ryb Antarktiki (Survey of the Antarctic Fish Fauna). Issled Fauny Morei 2(10):335–386Google Scholar
  3. Bouillon J, Boero F (2000) The Hydrozoa: a new classification in the light of old knowledge. Thalass Salent 24:3–45Google Scholar
  4. Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean hydrozoa. Sci Mar 68:5–449CrossRefGoogle Scholar
  5. Cartwright P, Evans NM, Dunn CW, Marques AC, Miglietta MP, Schuchert P, Collins AG (2008) Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J Mar Biol Assoc UK 88:1663–1672CrossRefGoogle Scholar
  6. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114Google Scholar
  7. Collins AG (2000) Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Sci Mar 64:5–22CrossRefGoogle Scholar
  8. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432CrossRefGoogle Scholar
  9. Collins AG, Winkelmann S, Hadrys H, Schierwater B (2005) Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. Zool Scripta 34:91–99CrossRefGoogle Scholar
  10. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115CrossRefPubMedGoogle Scholar
  11. Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, Jarms G, Norenburg JL, Jankowski T, Cartwright P (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematic taxa. J Mar Biol Assoc UK 88:1673–1685CrossRefGoogle Scholar
  12. Cornelius PFS (1982) Hydroids and medusae of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of the genera. Bull Br Mus Nat Hist (Zool) 42:37–148Google Scholar
  13. Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the Family Hydractiniidae. Biochem Syst Ecol 21(1):57–69CrossRefGoogle Scholar
  14. Dunn CW, Pugh PR, Haddock SH (2005) Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. Syst Biol 54:916–935CrossRefPubMedGoogle Scholar
  15. Fry WG (1964) The pycnogonid fauna of the Antarctic continental shelf. In: Carrick R, Holgate MW, Prevost J (eds) Biologie Antarctique. Hermann, Paris, pp 263–269Google Scholar
  16. Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670CrossRefPubMedGoogle Scholar
  17. Govindarajan AF, Halanych KM, Cunningham CW (2005a) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  18. Govindarajan AF, Piraino S, Gravili C, Kubota S (2005b) Species identification of bivalve-inhabiting marine hydrozoans of the genus Eugymnanthea. Invert Biol 124:1–10Google Scholar
  19. Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogenet Evol 38:820–834CrossRefPubMedGoogle Scholar
  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  21. Hemmrich G, Anokhin B, Zacharias H, Bosch T (2007) Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology. Mol Phylogenet Evol 44:281–290CrossRefPubMedGoogle Scholar
  22. Jazdzewski K, Teodorczyk W, Sicinski J, Kontek B (1991) Amphipod crustaceans as an important component of zoobenthos of the shallow Antarctic sublittoral. Hydrobiologia 223:105–117CrossRefGoogle Scholar
  23. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179CrossRefPubMedGoogle Scholar
  24. Latorre A, Moya A, Ayala FJ (1986) Mitochondrial DNA polymorphism of Drosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653CrossRefPubMedGoogle Scholar
  25. Leclère L, Schuchert P, Manuel M (2007) Phylogeny of the Plumularioidea (Hydrozoa, Leptothecata): evolution of colonial organization and life cycle. Zool Scripta 36:371–394CrossRefGoogle Scholar
  26. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invert Biol 123:23–42Google Scholar
  27. Miglietta MP, Piraino S, Kubota S, Schuchert P (2007) Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation. J Syst Biol Evol Res 45:11–19CrossRefGoogle Scholar
  28. Millard NAH (1975) Monograph of the Hydroida of southern Africa. Ann S Afr Mus 68:1–513Google Scholar
  29. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scripta 37:93–108Google Scholar
  30. Peña AL, García-Carrascosa AM (1993) The coppinia of Abietinella operculata (Lafoeidae: Hydrozoa Leptomedusae) and its systematic position. J Nat Hist 27:1003–1011CrossRefGoogle Scholar
  31. Peña Cantero AL, García Carrascosa AM (1995) Hidrozoos bentónicos de la campaña Antártida 8611. Publ Espec Inst Esp Oceanogr 19:1–148Google Scholar
  32. Peña Cantero AL, García Carrascosa AM (1999) Biogeographical distribution of the benthic thecate hydroids collected during the Spanish ‘Antártida 8611’ expedition and comparison between Antarctic and Magellan benthic hydroid faunas. Sci Mar 63(Suppl 1):209–218Google Scholar
  33. Peña Cantero AL, Marques AC (1999) Phylogenetic analysis of the Antarctic genus Oswaldella Stechow, 1919 (Hydrozoa, Leptomedusae, Kirchenpaueriidae). Contrib Zool 68:83–93Google Scholar
  34. Peña Cantero AL, Vervoort W (2003) Species of Staurotheca Allman, 1888 (Cnidaria: Hydrozoa: Sertulariidae) from US Antarctic expeditions, with the description of three new species. J Nat Hist 37:2653–2722CrossRefGoogle Scholar
  35. Peña Cantero AL, Vervoort W (2004) Species of Oswaldella Stechow, 1919 (Cnidaria: Hydrozoa: Kirchenpaueriidae) from US Antarctic expeditions, with the description of three new species. J Nat Hist 38:805–861CrossRefGoogle Scholar
  36. Peña Cantero AL, Vervoort W (2005) Species of Schizotricha Allman, 1883 (Cnidaria: Hydrozoa: Halopterididae) from US Antarctic expeditions with the description of two new species. J Nat Hist 39:795–818CrossRefGoogle Scholar
  37. Peña Cantero AL, Svoboda A, Vervoort W (1996) Species of Schizotricha Allman, 1883 (Cnidaria, Hydrozoa) from recent antarctic expeditions with R.V. ‘Polarstern’, with the description of a new species. Zool Med 70:411–435Google Scholar
  38. Peña Cantero AL, García Carrascosa AM, Vervoort W (1997a) On Antarctoscyphus (Cnidaria, Hydrozoa), a new genus of antarctic hydroids and the description of two new species. Polar Biol 18:23–32CrossRefGoogle Scholar
  39. Peña Cantero AL, Svoboda A, Vervoort W (1997b) Species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa) from recent antarctic expeditions with R.V. ‘Polarstern’, with the description of six new species. J Nat Hist 31:329–381CrossRefGoogle Scholar
  40. Peña Cantero AL, Svoboda A, Vervoort W (1997c) Species of Oswaldella Stechow, 1919 (Cnidaria, Hydrozoa) from recent antarctic expeditions with R.V. ‘Polarstern’, with the description of eight new species. Zool J Linn Soc 119:339–388CrossRefGoogle Scholar
  41. Peña Cantero AL, Svoboda A, Vervoort W (1999) Species of Antarctoscyphus Peña Cantero, García Carrascosa and Vervoort, 1997 (Cnidaria, Hydrozoa, Sertulariidae) from recent Antarctic expeditions with R.V. Polarstern, with the description of two new species. J Nat Hist 33:1739–1765CrossRefGoogle Scholar
  42. Peña Cantero AL, Svoboda A, Vervoort W (2002) Species of Symplectoscyphus Marktanner-Turneretscher, 1890 (Cnidaria: Hydrozoa, Sertulariidae) from recent Antarctic expeditions with R.V. Polarstern, with the description of four new species. J Nat Hist 36:1509–1568CrossRefGoogle Scholar
  43. Peña Cantero AL, Vervoort W, Watson J (2003) On Clathrozoellidae (Cnidaria, Hydrozoa, Anthoathecatae), a new family of rare deep-water leptolids, with the description of three new species. Zool Verh 345:281–296Google Scholar
  44. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  45. Ralph PM (1957) New Zealand thecate hydroids. Part I—Campanulariidae and Campanulinidae. Trans Roy Soc NZ 84:811–854Google Scholar
  46. Rambaut A, Drummond AJ (2007) Tracer version 1.4. Available at Accessed 3 Feb 2009
  47. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  48. Schierwater B, Ender A (2000) Sarsia marii n. sp. (Hydrozoa, Anthomedusae) and the use of 16S rDNA sequences for unpuzzling systematic relationships in Hydrozoa. Sci Mar 64(Supl. 1):117–122Google Scholar
  49. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  50. Schuchert P (1997) Review of the family Halopterididae (Hydrozoa, Cnidaria). Zool Verh 309:1–162Google Scholar
  51. Schuchert P (2005a) Species boundaries in the hydrozoan genus Coryne. Mol Phylogenet Evol 36:194–199CrossRefPubMedGoogle Scholar
  52. Schuchert P (2005b) Rediscovery of Coryne fucicola (de Filippi, 1866) (Cnidaria: Hydrozoa). Cah Biol Mar 46:305–310Google Scholar
  53. Schuchert P (2006) The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 1. Rev Suisse Zool 113:325–410Google Scholar
  54. Schuchert P, Reiswig HM (2006) Brinckmannia hexactinellidophila, n. gen., n. sp. a hydroid living in tissues of glass sponges of the reefs, fjords, and seamounts of Pacific Canada and Alaska. Can J Zool 84:564–572CrossRefGoogle Scholar
  55. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  56. Staden R, Beal K, Bonfield J (1999) The Staden package, 1998. In: Misener S, Krawetz S (eds) Computer methods in molecular biology. The Humana Press, Totowa, pp 115–130Google Scholar
  57. Stepanjants SD (1979) Hydroids of the antarctic and subantarctic waters. In: Biol res Soviet Antarct Exped 6 (in Russian). Issled Fauny Morei, vol 20, pp 1–200, pls 1–25Google Scholar
  58. Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene trees. Proc Roy Soc London B 269:137–142CrossRefGoogle Scholar
  59. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony. Sinauer Associates, SunderlandGoogle Scholar
  60. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  61. Totton AK (1930) Coelenterata. Part V. Hydroida. Nat Hist Rep Br Antarct Terra Nova Exped 1910 5:131–252, pls 1-3Google Scholar
  62. Vervoort W, Watson J (2003) The marine fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (thecate hydroids). NIWA Biodiversity Mem 119:1–538Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Álvaro L. Peña Cantero
    • 1
  • Vicente Sentandreu
    • 2
  • Amparo Latorre
    • 2
  1. 1.Instituto Cavanilles de Biodiversidad y Biología EvolutivaUniversidad de Valencia, Fundación General Universidad de ValenciaValenciaSpain
  2. 2.Instituto Cavanilles de Biodiversidad y Biología EvolutivaUniversidad de ValenciaValenciaSpain

Personalised recommendations