Advertisement

Polar Biology

, Volume 33, Issue 1, pp 13–29 | Cite as

Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica

  • Amber L. AnnettEmail author
  • Damien S. Carson
  • Xavier Crosta
  • Andrew Clarke
  • Raja S. Ganeshram
Original Paper

Abstract

Phytoplankton assemblages from seasonally sea-ice covered Ryder Bay (Adelaide Island, Antarctica) were studied over three austral summers (2004–2007), to link sea-ice variability and environmental conditions with algal speciation. Typical of near-shore Antarctic waters, biomass was dominated by large diatoms, although the prymnesiophyte Phaeocystis antarctica was numerically dominant. Although there was considerable interannual variability between main diatom species, high biomass of certain species or species groups corresponded consistently to certain phases of seasonal progression. We present the first documentation of an extensive bloom of the late-season diatom Proboscia inermis in February 2006, accounting for over 90% of diatom biomass. At this time, water column stratification and nutrient drawdown were high relative to other periods of the study, although carbon export was relatively low. Melt water flux in this region promotes well-stratified surface waters and high chlorophyll levels, but not necessarily concurrent increases in export production relative to seasons with lower freshwater inputs.

Keywords

Diatoms Phytoplankton Seasonality Sea-ice Coastal Antarctic Proboscia inermis 

Notes

Acknowledgments

This project was funded by NERC Antarctic Funding Initiative 4-02 and the Commonwealth Scholarship and Fellowship Program. The authors would like to thank the Bonner Laboratory marine science team at Rothera Research Station (2004–2007), and Nicola Cayzer for assistance with SEM analysis. Constructive comments were provided by Claire Allen and an anonymous reviewer to improve and clarify the paper.

References

  1. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486CrossRefGoogle Scholar
  2. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367CrossRefPubMedGoogle Scholar
  3. Bianchi F, Boldrin A, Cioce F, Dieckmann G, Kuosa H, Larsson AM, Nothig EM, Sehlstedt PI, Socal G, Syvertsen EE (1992) Phytoplankton distribution in relation to sea ice, hydrography and nutrients in the Northwestern Weddell Sea in Early Spring 1988 during Epos. Polar Biol 12:225–235CrossRefGoogle Scholar
  4. Blazewicz-Paszkowycz M, Ligowski R (2002) Diatoms as food source indicator for some Antarctic Cumacea and Tanaidacea (Crustacea). Antarct Sci 14:11–15CrossRefGoogle Scholar
  5. Brichta M, Nothig EM (2003) Proboscia Inermis: a key diatom species in Antarctic Autumn. AGU Chapman Conference: the role of diatom production and Si flux and Burial in the regulation of global cycles. Paros, GreeceGoogle Scholar
  6. Brockington S, Clarke A (2001) The relative influence of temperature and food on the metabolism of a marine invertebrate. J Exp Marine Biol Ecol 258:87–99CrossRefGoogle Scholar
  7. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans Royal Soc B Biol Sci 362:149–166CrossRefGoogle Scholar
  8. Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN (2008) Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res II 55:1988–2006CrossRefGoogle Scholar
  9. Crosta X, Crespin J, Billy I, Ther O (2005) Major factors controlling Holocene delta C-13(org) changes in a seasonal sea-ice environment, Adelie Land, East Antarctica. Glob Biogeochem Cycles 19. doi: 10.1029/2004GB002426
  10. Denis D, Crosta X, Zaragosi S, Romero O, Martin B, Mas V (2006) Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adelie Land, East Antarctica. Holocene 16:1137–1147CrossRefGoogle Scholar
  11. Doucette GJ, Fryxell GA (1985) Thalassiosira antarctica (Bacillariophyceae): vegetative and resting stage ultrastructure of an ice-related marine diatom. Polar Biol 4:107–112CrossRefGoogle Scholar
  12. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans Royal Soc B-Biol Sci 362:67–94CrossRefGoogle Scholar
  13. Edler L (1979) Recommendations for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. Balt Marine Biol Publ 5Google Scholar
  14. Eppley RW, Reid FMH, Strickland JDH (1970) The ecology of the plankton off La Jolla, California, in the period April through September, 1967. III. Estimates of phytoplankton crop, size, growth rate and primary production. Bull Scripps Inst Oceanogr 17:33–42Google Scholar
  15. Estrada M, Delgado M (1990) Summer phytoplankton distributions in the Weddell Sea. Polar Biol 10:441–449CrossRefGoogle Scholar
  16. Fiala M, Kopczynska EE, Jeandel C, Oriol L, Vetion G (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J Plankton Res 20:1341–1356CrossRefGoogle Scholar
  17. Froneman PW, Pakhomov EA, Laubscher RK (1997) Microphytoplankton assemblages in the waters surrounding South Georgia, Antarctica during austral summer 1994. Polar Biol 17:515–522CrossRefGoogle Scholar
  18. Garibotti IA, Vernet M, Ferrario ME, Smith RC, Ross RM, Quetin LB (2003a) Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecol Prog Ser 261:21–39CrossRefGoogle Scholar
  19. Garibotti IA, Vernet M, Kozlowski WA, Ferrario ME (2003b) Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Marine Ecol Prog Ser 247:27–42CrossRefGoogle Scholar
  20. Garibotti IA, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep Sea Res I 52:1823–1841CrossRefGoogle Scholar
  21. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239CrossRefGoogle Scholar
  22. Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic Pack Ice and in ice-edge plankton. J Phycol 23:564–572Google Scholar
  23. Gersonde R, Zielinski U (2000) The reconstruction of late Quaternary Antarctic sea-ice distribution—the use of diatoms as a proxy for sea-ice. Palaeogeogr Palaeoclimatol Palaeoecol 162:263–286CrossRefGoogle Scholar
  24. Gomi Y, Umeda H, Fukuchi M, Taniguchi A (2005) Diatom assemblages in the surface water of the Indian Sector of the Antarctic Surface Water in summer of 1999/2000. Polar Biosci 18:1–15Google Scholar
  25. Grossi SM, Sullivan CW (1985) Sea ice microbial communities. 5. The vertical zonation of diatoms in an Antarctic Fast Ice Community. J Phycol 21:401–409Google Scholar
  26. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res Atmospheres 104:30997–31022CrossRefGoogle Scholar
  27. Hart TJ (1942) Phytoplankton periodicity in Antarctic waters. Discovery Rep 21:261–365Google Scholar
  28. Hasle GR (1978) Using the inverted-microscope method. In: Sournia A (ed) Monographs on oceanographic methodology 6 Phytoplankton manual. UNESCO, Paris, pp 191–196Google Scholar
  29. Hasle GR, Syvertsen EE (1997) Marine diatoms. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, New York, pp 5–385CrossRefGoogle Scholar
  30. Hillebrand H, Durselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic macroalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  31. Hofmann EE, Klink JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In: Ross RM (ed) Foundations for Ecological Research West of the Antarctic Peninsula, Antarctic Research Series, vol 70. American Geophysical Union, Washington, DC, pp 61–80Google Scholar
  32. Holm-Hansen O, Mitchell BG (1991) Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep Sea Res 38:961–980CrossRefGoogle Scholar
  33. Holm-Hansen O, Mitchell BG, Hewes CD, Karl DM (1989) Phytoplankton Blooms in the Vicinity of Palmer Station, Antarctica. Polar Biol 10:49–57CrossRefGoogle Scholar
  34. Horner RA (1985) Ecology of sea ice microalgae. In: Horner RA (ed) Sea ice biota. CRC Press, Florida, pp 83–103Google Scholar
  35. Johansen JR, Fryxell GA (1985) The genus Thalassiosira (Bacillariophyceae): studies on species occurring south of the Antarctic Convergence Zone. Phycologia 24:155–179Google Scholar
  36. Jordan RW, Ligowski R, Nothig EM, Priddle J (1991) The diatom genus Proboscia in Antarctic Waters. Diatom Res 6:63–78Google Scholar
  37. Kang SH, Fryxell GA (1993) Phytoplankton in the Weddell Sea, Antarctica—composition, abundance and distribution in water-column assemblages of the marginal ice-edge zone during Austral Autumn. Marine Biol 116:335–348CrossRefGoogle Scholar
  38. Kang SH, Lee SH (1995) Antarctic phytoplankton assemblage in the western Bransfield Strait region, February 1993: composition, biomass, and mesoscale distributions. Marine Ecol Prog Ser 129:253–267CrossRefGoogle Scholar
  39. Kang SH, Kang JS, Lee S, Chung KH, Kim D, Park MG (2001) Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. J Plankton Res 23:333–352CrossRefGoogle Scholar
  40. Kang JS, Kang SH, Kim D, Kim D-Y (2003) Planktonic centric diatom Minidiscus chilensis dominated sediment trap material in eastern Bransfield Strait, Antarctica. Marine Ecol Prog Ser 255:93–99CrossRefGoogle Scholar
  41. Kemp AES, Pike J, Pearce RB, Lange CB (2000) The “Fall dump”—a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep Sea Res II 47:2129–2154CrossRefGoogle Scholar
  42. Konno S, Jordan RW (2007) An amended terminology for the Parmales (Chrysophyceae). Phycologia 46:612–616CrossRefGoogle Scholar
  43. Kopczynska E (1992) Dominance of Microflagellates over Diatoms in the Antarctic Areas of Deep Vertical Mixing and Krill Concentrations. J Plankton Res 14:1031–1054CrossRefGoogle Scholar
  44. Laws RA (1983) Preparing strewn slides for quantitative microscopical analysis: a test using calibrated microspheres. Micropaleontology 24:60–65CrossRefGoogle Scholar
  45. Leventer A, Dunbar RB (1996) Factors influencing the distribution of diatoms and other algae in the Ross Sea. J Geophys Res Oceans 101:18489–18500CrossRefGoogle Scholar
  46. Ligowski R, Godlewski M, Lukowski A (1992) Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice. Proc NIPR Symp Polar Biol 5:9–20Google Scholar
  47. Maddison EJ, Pike J, Leventer A, Dunbar R, Brachfeld S, Domack EW, Manley P, McClennen C (2006) Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Mar Micropaleontol 60:66–88CrossRefGoogle Scholar
  48. Margalef R (1958) Modern orientations in hydrobiology. Scientia 93:41–46Google Scholar
  49. McMinn A, Scott FJ (2005) Dinoflagellates. In: Scott FJ, Marchant H (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 202–250Google Scholar
  50. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32. doi: 10.1029/2005GL024042
  51. Meredith MP, Renfrew IA, Clarke A, King JC, Brandon MA (2004) Impact of the 1997/98 ENSO on upper ocean characteristics in Marguerite Bay, western Antarctic Peninsula. J Geophys Res-Oceans 109. doi: 10.1029/2003JC001784
  52. Meredith MP, Brandon MA, Wallace MI, Clarke A, Leng MJ, Renfrew IA, van Lipzig NPM, King JC (2008) Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: Results from d[18]O. Deep Sea Res II 55:309–322CrossRefGoogle Scholar
  53. Mitchell BG, Holm-Hansen O (1991) Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep Sea Res 38:1009–1028CrossRefGoogle Scholar
  54. Moline MA, Prezelin BB (1996) Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Marine Ecol Prog Ser 145:143–160CrossRefGoogle Scholar
  55. Olguin HF, Boltovskoy D, Lange CB, Brandini F (2006) Distribution of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30–61 degrees S). J Plankton Res 28:1107–1128CrossRefGoogle Scholar
  56. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218Google Scholar
  57. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630CrossRefGoogle Scholar
  58. Peters E, Thomas DN (1996) Prolonged darkness and diatom mortality. 1. Marine Antarctic species. J Exp Marine Biol Ecol 207:25–41CrossRefGoogle Scholar
  59. Pike J, Allen CS, Leventer A, Stickley CE, Pudsey CJ (2008) Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontol 67:274–287CrossRefGoogle Scholar
  60. Priddle J, Heywood RB, Theriot E (1986) Some environmental-factors influencing phytoplankton in the Southern-Ocean around South Georgia. Polar Biol 5:65–79CrossRefGoogle Scholar
  61. Rathburn AE, Pichon JJ, Ayress MA, DeDeckker P (1997) Microfossil and stable-isotope evidence for changes in Late Holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 131:485–510CrossRefGoogle Scholar
  62. Riaux-Gobin C, Poulin M, Prodon R, Tregilier P (2003) Land-fast ice microalgal and phytoplanktonic communities (Adelie Land, Antarctica) in relation to environmental factors during ice break-up. Antarct Sci 15:353–364CrossRefGoogle Scholar
  63. Roberts D, Craven M, Cai MH, Allison I, Nash G (2007) Protists in the marine ice of the Amery Ice Shelf, East Antarctica. Polar Biol 30:143–153CrossRefGoogle Scholar
  64. Romero OE, Hebbeln D, Wefer G (2001) Temporal and spatial variability in export production in the SE Pacific Ocean: evidence from siliceous plankton fluxes and surface sediment assemblages. Deep Sea Res I 48:2673–2697CrossRefGoogle Scholar
  65. Rousseau V, Mathot S, Lancelot C (1990) Calculating carbon biomass of Phaeocystis sp. from microscopic observations. Marine Biol 107:305–314CrossRefGoogle Scholar
  66. Sakshaug E, Holmhansen O (1986) Photoadaptation in Antarctic Phytoplankton—variations in growth-rate, chemical-composition and P-curve versus I-curve. J Plankton Res 8:459–473CrossRefGoogle Scholar
  67. Scott FJ, Thomas DP (2005) Diatoms. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 13–201Google Scholar
  68. Smayda TJ (1978) From phytoplankters to biomass. In: Sournia A (ed) Monographs on oceanographic methodology 6 Phytoplankton manual. UNESCO, Paris, pp 273–279Google Scholar
  69. Smetacek V, Scharek R, Gordon LI, Eicken H, Fahrbach E, Rohardt G, Moore S (1992) Early Spring Phytoplankton Blooms in Ice Platelet Layers of the Southern Weddell Sea, Antarctica. Deep Sea Res I 39:153–168CrossRefGoogle Scholar
  70. Smith WO Jr, Sakshaug E (1990) Polar Phytoplankton. In: Smith WO Jr (ed) Polar oceanography part B chemistry, biology and geology. Academic Press, New York, pp 477–525Google Scholar
  71. Smith RC, Stammerjohn SE (2001) Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann Glaciol 33:493–500CrossRefGoogle Scholar
  72. Smith WO Jr, Nelson DM, DiTullio GR, Leventer A (1996) Temporal and spatial patterns in the Ross Sea: Phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18465CrossRefGoogle Scholar
  73. Smith RC, Baker KS, Vernet M (1998) Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Peninsula. J Mar Syst 17:229–243CrossRefGoogle Scholar
  74. Smith DA, Hofmann EE, Klink JM, Lascara CM (1999) Hydrography and circulation of the West Antarctic Peninsula Continental Shelf. Deep Sea Res I 46:925–949CrossRefGoogle Scholar
  75. Smith WO Jr, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res II 47:3119–3140CrossRefGoogle Scholar
  76. Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008a) Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res II 55:2041–2058CrossRefGoogle Scholar
  77. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008b) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res Oceans 113. doi:  10.1029/2007JC004269
  78. Stickley CE, Pike J, Leventer A, Dunbar R, Domack EW, Brachfeld S, Manley P, McClennan C (2005) Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 227:290–310CrossRefGoogle Scholar
  79. Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12:411–418CrossRefGoogle Scholar
  80. Theriot E, Fryxell GA (1985) Multivariate statistical analysis of net diatom species distributions in the Southwestern Atlantic and Indian Ocean. Polar Biol 5:23–30CrossRefGoogle Scholar
  81. Torinesi O, Fily M, Genthon C (2003) Interannual variability and trend of the Antarctic Ice Sheet Summer Melting Period from 20 Years of Spaceborne Microwave Data. J Clim 16:1047–1060CrossRefGoogle Scholar
  82. Varela M, Fernandez E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res II 49:749–768CrossRefGoogle Scholar
  83. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang 60:243–274CrossRefGoogle Scholar
  84. Whitehouse MJ, Symon C, Priddle J (1993) Variations in the distribution of chlorophyll-a and inorganic nutrients around South-Georgia, South-Atlantic. Antarct Sci 5:367–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Amber L. Annett
    • 1
    Email author
  • Damien S. Carson
    • 1
  • Xavier Crosta
    • 2
  • Andrew Clarke
    • 3
  • Raja S. Ganeshram
    • 1
  1. 1.Grant Institute, School of GeoSciencesUniversity of EdinburghEdinburghUK
  2. 2.UMR-CNRS 5805 EPOCUniversite Bordeaux 1Talence CedexFrance
  3. 3.British Antarctic SurveyCambridgeUK

Personalised recommendations