Advertisement

Polar Biology

, Volume 32, Issue 11, pp 1549–1558 | Cite as

Terrestrial mesofauna in above- and below-ground habitats: Taylor Valley, Antarctica

  • Breana L. Simmons
  • Diana H. Wall
  • Byron J. Adams
  • Edward Ayres
  • John E. Barrett
  • Ross A. Virginia
Original Paper

Abstract

In the McMurdo Dry Valleys region of Antarctica, above-ground production is often limited to mosses and algae that occur near seasonally available liquid water such as ephemeral streams and ice-covered lakes. Compared to surrounding dry soils these critical transition zones are highly productive and harbor a more diverse assemblage of soil animals, including rotifers, tardigrades, nematodes and microarthropods. Current cooling trends punctuated by warming events, and predicted future climate warming are expected to affect the hydrology of this region and thereby biodiversity and ecosystem functioning. Above-ground communities are exposed to more variable temperature, relative humidity and greater UV radiation, and may be more vulnerable to climate change than sediments beneath, which are buffered from short-term changes. In this study, we compared above- and below-ground communities associated with either moss or cyanobacterial mats along glacial-fed streams and lakes differing in biological complexity (diversity, productivity and habitat suitability). All groups of soil fauna were more abundant in the above-ground material compared to the sediment beneath. Common indicators of habitat suitability (chlorophyll a, soil pH, soil salinity, and soil nitrogen) did not differ between vegetation types but were significantly different among sites. Variables most correlated with invertebrate abundances were sediment salinity, chlorophyll a content and nitrogen concentration. The McMurdo Dry Valleys are expected to become warmer and wetter as a result of climate change. This will likely increase the area of suitable habitat for most soil animals as areas of liquid water potentially increase and become available for longer periods of time.

Keywords

Soil biodiversity Aquatic-terrestrial interface Climate change Critical transition zones Habitat preference Nematodes Rotifers Tardigrades 

Notes

Acknowledgments

The authors wish to thank Abigail Adams for field and lab assistance. Soil and vegetation analysis were run by Galina Ackerman and Kathy Welch in the Crary Analytical Lab at McMurdo Station. Figure 1 provided by D. M. McKnight. Vegetation and soils are permanently stored at the Colorado State University Antarctic Soil Archive. Preserved animals are part of the Colorado State University, Natural History Museum’s Soil Micro-invertebrate Collection. This study was supported by National Science Foundation grants OPP 9810219 and OPP 0096250 as part of the McMurdo Dry Valley LTER.

References

  1. Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018. doi: 10.1016/j.soilbio.2006.04.030 CrossRefGoogle Scholar
  2. Alger AS, McKnight DM, Spaulding SA, Tate CM, Shupe GH, Welsh KA, Edwards R, Andrews ED, House HR (1997) Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. 51, INSTAAR, University of Colorado Google Scholar
  3. Andrassy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. Polar Biol 30:669–678. doi: 10.1007/s00300-006-0224-4 CrossRefGoogle Scholar
  4. Ayres E, Wall DH, Adams BJ, Barrett JE, Virginia RA (2007) Unique similarity of faunal communities across aquatic-terrestrial interfaces in a polar desert ecosystem. Ecosystem 52:3–535Google Scholar
  5. Bardgett RD, Anderson JM, Behan-Pelletier V, Brussaard L, Coleman DC, Ettema C, Moldenke A, Schimel JP, Wall DH (2001) The influence of soil biodiversity on the hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems. Ecosystem 4:421–429. doi: 10.1007/s10021-001-0020-5 CrossRefGoogle Scholar
  6. Barrett JE, Virginia RA, Wall DH (2002) Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystem 5:289–299. doi: 10.1007/s10021-001-0072-6 CrossRefGoogle Scholar
  7. Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH, Moorhead DL (2007) Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. J Geophys Res 112:G01010. doi: 10.1029/2005JG000141 CrossRefGoogle Scholar
  8. Barrett JE, Virginia RA, Wall DH, Adams BJ (2008a) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity ecosystem. Glob Change Biol 14:1734–1744. doi: 10.1111/j.1365-2486.2008.01611.x CrossRefGoogle Scholar
  9. Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008b) Persistent effects of a discrete climate event on a polar desert ecosystem. Glob Change Biol 14:2249–2261. doi: 10.1111/j.1365-2486.2008.01641.x CrossRefGoogle Scholar
  10. Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecol 81:2377–2391CrossRefGoogle Scholar
  11. Caldwell JR (1981) Biomass and respiration of Nematode populations in 2 Moss Communities at Signy-Island, Maritime Antarctic. Oikos 37:160–166. doi: 10.2307/3544460 CrossRefGoogle Scholar
  12. Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, AmsterdamGoogle Scholar
  13. Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: The McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17. doi: 10.1017/S0954102001000037 CrossRefGoogle Scholar
  14. Dartnall HJG (2005) Freshwater invertebrates of subantarctic South Georgia. J Nat Hist 39:3321–3342. doi: 10.1080/00222930500190186 CrossRefGoogle Scholar
  15. De Dyne GB, van Ruijven J, Raaijmakers CE, de Ruiter PC, van der Putten WH (2007) Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos 116:923–930. doi: 10.1111/j.0030-1299.2007.15761.x CrossRefGoogle Scholar
  16. Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res 107:4772–4784. doi: 10.1029/2001JD002045 CrossRefGoogle Scholar
  17. Elberling BE, Gregorich EG, Hopkins DW, Sparrow AD, Novis P, Greenfield LG (2006) Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol Biochem 38:3095–3106. doi: 10.1016/j.soilbio.2005.12.011 CrossRefGoogle Scholar
  18. Esposito RMM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:L07406. doi: 10.1029/2006GL025903 CrossRefGoogle Scholar
  19. Freckman DW, Virginia RA (1993) The ecology of nematodes in Antarctic Dry Valley soils. Antarct J US 28:10–11Google Scholar
  20. Freckman DW, Virginia RA (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert. The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC, pp 323–336Google Scholar
  21. Gooseff MN, Barrett JE, Doran PT, Fountain AG, Lyons WB, Parsons AN, Porazinska DL, Virginia RA, Wall DH (2003) Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. AAAR 35:91–99Google Scholar
  22. Gooseff MN, Barrett JE, Northcott ML, Bate DB, Hill KR, Zeglin LH, Bobb M, Takacs-Vesbach CD (2007) Controls n the spatial dimensions of wetted hydrologic margins of two Antarctic lakes. Vad Zone J 6:841–848. doi: 10.2136/vzj2006.0161 CrossRefGoogle Scholar
  23. Green TGA, Kulle D, Pannewitz S, Sancho LG, Schroeter B (2005) UV-A protection in mosses growing in continental Antarctica. Polar Biol 28:822–827. doi: 10.1007/s00300-005-0011-7 CrossRefGoogle Scholar
  24. Greenfield LG (1992) Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarct Sci 4:205–206. doi: 10.1017/S0954102092000312 CrossRefGoogle Scholar
  25. Harris KJ, Carey AE, Lyons WB, Welch KA, Fountain AG (2007) Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. GSA Bull 119:548–555. doi: 10.1130/B25913.1 CrossRefGoogle Scholar
  26. Hopkins DW, Sparrow AD, Novis PM, Gregorich EG, Elberling G, Greenfield LG (2006) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc R Soc Lond B Biol Sci 273:2687–2695. doi: 10.1098/rspb.2006.3595 CrossRefGoogle Scholar
  27. Howard-Williams C, Pridmore R, Downes MT, Vincent WF, Pickmere S (1988) Cyanobacteria and nitrogen cycling in the Ross Ice Shelf Ecosystems (RISE). NZARP Taupo Res Lab Rep 103Google Scholar
  28. Ikard SJ, Gooseff MN, Barrett JE, Takacs-Vesbach CD (2009) Active layer thermal characterization across a soil moisture gradient In the McMurdo Dry Valleys. Antarc Perm Perigl Proc 20:27–39. doi: 10.1002/ppp.634 CrossRefGoogle Scholar
  29. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315. doi: 10.2307/1551914 CrossRefGoogle Scholar
  30. Kinchin IM (1989) The Moss Fauna. 2. Nematodes. J Biol Educ 23:37–40Google Scholar
  31. Lyons WB, Welch KA, Carey AE, Doran PT, Wall DH, Virginia RA, Fountain AG, Csathó BM, Tremper CM (2005) Groundwater seeps in Taylor Valley Antarctica: An example of a subsurface melt event. Ann Glaciol 40:200–206. doi: 10.3189/172756405781813609 CrossRefGoogle Scholar
  32. McKnight DM, Niyogi DV, Alger AS, Bomblies A, Conovitz PA, Tate M (1999) Dry Valley streams in Antarctica: ecosystems waiting for water. Biosci 49:985–995. doi: 10.2307/1313732 CrossRefGoogle Scholar
  33. McKnight DM, Runkel RL, Tate KR, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23:171–188. doi: 10.1899/0887-3593(2004)023<0171:INAPDO>2.0.CO;2 CrossRefGoogle Scholar
  34. Mcknight DM, Tate CM, Andrews ED, Niyogi DK, Cozzetto K, Welch K, Lyons WB, Capone DG (2007) Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarcitca: a long-term geomorphological experiment. Geomorphy 89(SI):186–204Google Scholar
  35. Newsham KK, Rolf J, Pearce DA, Strachan RJ (2004) Differing preference of Antarctic soil nematodes for microbial prey. Eur J Soil Biol 40:1–8. doi: 10.1016/j.ejsobi.2004.01.004 CrossRefGoogle Scholar
  36. Niyogi K, Tate C, McKnight D, Duff J, Alger A (1997) Species composition and primary production of algal communities in dry valley streams in Antarctica: examination of the functional role of biodiversity. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic Ice-Free Landscapes. Balkema, Brookfield, pp 171–179Google Scholar
  37. Nkem JN, Virginia RA, Barrett JE, Wall DH, Li G (2006) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651. doi: 10.1007/s00300-005-0101-6 CrossRefGoogle Scholar
  38. Northcott ML, Gooseff MN, Barrett JE, Zeglin LH, Takacs-Vesbach CD, Humphrey J (2009) Hydrologic characteristics of lake- and stream-side riparian margins in the McMurdo Dry Valleys, Antarctica. Hydrol Proc (in press) Google Scholar
  39. Overgaard-Nielsen C (1948) Studies on the soil microfauna. I. The moss-inhabiting nematodes and rotifers. Naturv Skr Laerde Selsk Skr 1:1–98Google Scholar
  40. Pannewitz S, Green TGA, Scheidegger C, Schlensog M, Schroeter B (2003) Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during the mid-austral summer. Polar Biol 26:545–551. doi: 10.1007/s00300-003-0518-8 CrossRefGoogle Scholar
  41. Poage MA, Barrett JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. AAAR 40:119–128Google Scholar
  42. Powers LE, Freckman DW, Virginia RA (1995) Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biol 15:325–333CrossRefGoogle Scholar
  43. Schwarz AMJ, Green JD, Green TGA, Seppelt RD (1993) Invertebrates associated with moss communities at Canada Glacier, Southern Victoria-Land, Antarctica. Polar Biol 13:157–162. doi: 10.1007/BF00238925 CrossRefGoogle Scholar
  44. Seppelt RD, Green TGA (1998) A bryophyte flora for Southern Victoria Land, Antarctica. NZ J Bot 36:617–635Google Scholar
  45. Sinclair BJ, Sjursen H (2001) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiology 45:134–145. doi: 10.1078/0031-4056-00075 CrossRefGoogle Scholar
  46. Sohlenius B, Bostrom S (2006) Patch-dynamics and population structure of nematodes and tardigrades on Antarctic nunataks. Eur J Soil Biol 42:S321–S325. doi: 10.1016/j.ejsobi.2006.07.008 CrossRefGoogle Scholar
  47. Suren A (1990) Microfauna associated with algal mats in melt ponds of the Ross Ice Shelf. Polar Biol 10:329–335. doi: 10.1007/BF00237819 CrossRefGoogle Scholar
  48. Suren A (1991) Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshw Biol 26:399–418. doi: 10.1111/j.1365-2427.1991.tb01407.x CrossRefGoogle Scholar
  49. Treonis AM, Wall DH, Virginia RA (2005) Invertebrate diversity in Taylor Valley soils and sediments. Antarct J US 33:13–16Google Scholar
  50. Wall DH (2007) Global change tipping points: above- and belowground biotic interactions in a low diversity ecosystem. Philos Proc R Soc Lond Sect B Biol Sci 362:2291–2306. doi: 10.1098/rstb.2006.1950 CrossRefGoogle Scholar
  51. Wall DH, Viginia RA (1999) Controls on soil biodiversity: insights from an extreme environment. Appl Soil Ecol 13:137–150. doi: 10.1016/S0929-1393(99)00029-3 CrossRefGoogle Scholar
  52. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi: 10.1126/science.1094875 CrossRefPubMedGoogle Scholar
  53. Yeates GW (1970) Two terrestrial nematodes from the McMurdo Sound region Antarctica, with a note on Anaplectus arenicola Killick. J Helminthol XLVI 2:7–34Google Scholar
  54. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi: 10.1111/j.1574-6941.2006.00200.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Breana L. Simmons
    • 1
  • Diana H. Wall
    • 1
    • 2
  • Byron J. Adams
    • 3
  • Edward Ayres
    • 1
  • John E. Barrett
    • 4
  • Ross A. Virginia
    • 5
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.Department of BiologyColorado State UniversityFort CollinsUSA
  3. 3.Department of Biology, and Evolutionary Ecology LaboratoriesBrigham Young UniversityProvoUSA
  4. 4.Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Environmental Studies ProgramDartmouth CollegeHanoverUSA

Personalised recommendations