Polar Biology

, Volume 32, Issue 8, pp 1195–1202 | Cite as

Zooplankton feeding on algae and bacteria under ice in Lake Druzhby, East Antarctica

  • Christin SäwströmEmail author
  • Jan Karlsson
  • Johanna Laybourn-Parry
  • Wilhelm Granéli
Original Paper


The feeding of the cladoceran Daphniopsis studeri on algae and bacteria was investigated under ice in an ultra-oligotrophic Antarctic lake from late autumn (May) to early spring (October) in 2004. D. studeri fed on both algae and bacteria with estimated filtering rates of 0.048 and 0.061 l ind−1 day−1), respectively. Algae seemed to be the major food resource for the D. studeri population, however at times of low algal densities the bacterioplankton represented an important alternative food resource. The D. studeri grazing impact on the algal and bacterial standing stock was in general low (0.6–4.6% removed per day), but during the winter period this organism can remove up to 34% of the bacterial production (BP). At times D. studeri grazing can temporarily have a significant impact on the BP rates, though their impact was relatively low when compared to viral-induced bacterial mortality in the lake.


Antarctic lake Bacteria Algae Zooplankton Feeding rates 



This work was funded by a Marie Curie Scholarship, the Australian Antarctic Division and Vetenskapsrådet (VR) the Swedish Research Council. We would like to thank the winter crew at Davis station, Antarctica 2004 for logistical support and field assistance. We also thank Ann-Kristin Bergström for help with the identification of the algal culture.


  1. Achenbach L, Lampert W (1997) Effects of elevated temperatures on threshold food concentrations and possible competitive abilities of differently sized cladoceran species. Oikos 79:469–476CrossRefGoogle Scholar
  2. Agasild H, Nõges T (2005) Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J Plankton Res 11:1155–1174Google Scholar
  3. Akatova NA (1964) The occurrence of Daphniopsis studeri Ruhe (Cladocera) in the lakes of the Vestfold Hills, East Antarctica. Biological results of the Soviet Antarctic expedition (1955–58), studies of marine fauna (2). IPST, Jerusalem, pp 190–193Google Scholar
  4. Antia NJ, McAllister CD, Parsons TR, Stephens K, Strickland JDH (1963) Further measurements of primary production using a large-volume plastic sphere. Limnol Oceanogr 8:166–183Google Scholar
  5. Bayliss PR, Laybourn-Parry J (1995) Seasonal abundance and size variation in Antarctic populations of the cladoceran Daphniopsis studeri. Antarct Sci 7:393–394CrossRefGoogle Scholar
  6. Bell RT (1993) Estimating production of heterotrophic bacterioplankton via the incorporation of tritiated thymidine. In: Kemp BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. CRC, Boca Raton, pp 495–503Google Scholar
  7. Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microbiol 48:755–757PubMedGoogle Scholar
  8. Brendelberger H (1991) Filter mesh size of cladocerans predict retention efficiency for bacteria. Limnol Oceanogr 36:884–894Google Scholar
  9. Dartnall HJG (2000) A limnological reconnaissance of the Vestfold Hills. ANARE Reports 141. Australian Antarctic Division, Kingston, 57 pGoogle Scholar
  10. DeMott WR (1985) Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Arch Hydrobiol Beih Ergeb Limnol 21:125–134Google Scholar
  11. Eppley RW (1968) An incubation method for estimating the carbon content of phytoplankton in natural samples. Limnol Oceanogr 13:574–582Google Scholar
  12. Eppley RW, Carlucci AF, Holm-Hansen O, Kiefer D, McCarthy JJ, Venrick E, Williams PM (1971) Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonium, or urea as the nitrogen source. Limnol Oceanogr 16:741–751Google Scholar
  13. Eppley RW, Harrison WG, Chisholm SW, Stewart E (1977) Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. J Mar Res 35:671–696Google Scholar
  14. Geertz-Hansen O, Olesen M, Bjørnsen PK, Larsen JB, Riemann B (1987) Zooplankton consumption of bacteria in a eutrophic lake and in experimental enclosures. Arch Hydrobiol 110:553–563Google Scholar
  15. Hagen W, Auel H (2001) Seasonal adaptations on the role of lipids in oceanic zooplankton. Zoology 104:313–326PubMedCrossRefGoogle Scholar
  16. Hansson L-A, Tranvik L (2003) Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biol 26:783–788CrossRefGoogle Scholar
  17. Henshaw T, Laybourn-Parry J (2002) The annual patterns of photosynthesis in two large freshwater, ultra-oligotrophic Antarctic lakes. Polar Biol 25:744–752Google Scholar
  18. Hwang S-J, Heath RT (1999) Zooplankton bacterivory at coastal and offshore sites of Lake Erie. J Plankton Res 21:699–719CrossRefGoogle Scholar
  19. Jarvis AC (1988) Diel zooplankton community feeding activity and filtration rates of Pseudoboeckella volucris and Daphniopsis studeri on sub-antarctic Marion Island. Hydrobiologia 164:13–21CrossRefGoogle Scholar
  20. Jeppesen E, Søndergaard M, Jensen JP (1996) Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. J Plankton Res 18:1605–1625CrossRefGoogle Scholar
  21. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109:445–454Google Scholar
  22. Jürgens K (1994) Impact of Daphnia on planktonic microbial food webs—a review. Mar Microb Food Webs 8:295–324Google Scholar
  23. Karlsson J, Säwström C (2009) Benthic algae support zooplankton growth during winter in a clear-water lake. Oikos. doi: 10.1111/j.1600-0706.2008.17239.x
  24. Kirchman D (2001) Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. In: Paul JH (ed) Marine microbiology—methods in microbiology. Academic, London, pp 225–237Google Scholar
  25. Lampert W, Brendelberger H (1996) Strategies of phenotypic low-food adaptation in Daphnia: filter screens, mesh sizes, and appendage beat rates. Limnol Oceanogr 41:216–233Google Scholar
  26. Lampert W, Schober U (1980) The importance of “threshold” food concentrations. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. American Society of Limnology and Oceanography special symposium number 3. University Press of New England, Hanover, pp 264–267Google Scholar
  27. Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B Biol Sci 357:863–869PubMedCrossRefGoogle Scholar
  28. Laybourn-Parry J, Bayliss P (1996) Seasonal dynamics of the planktonic community in Lake Druzhby, Princess Elizabeth Land, Eastern Antarctica. Freshw Biol 35:57–67CrossRefGoogle Scholar
  29. Laybourn-Parry J, Marchant HJ (1992) Daphniopsis studeri (Crustacea: Cladocera) in lakes of the Vestfold Hills, Antarctica. Polar Biol 11:631–635CrossRefGoogle Scholar
  30. Laybourn-Parry J, Henshaw T, Jones DJ, Quayle W (2004) Bacterioplankton production in freshwater Antarctic lakes. Freshw Biol 49:735–744CrossRefGoogle Scholar
  31. Murray AG, Eldridge PM (1994) Marine viral ecology: incorporation of bacteriophage into the microbial planktonic food web paradigm. J Plankton Res 16:627–641CrossRefGoogle Scholar
  32. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  33. Nõges T (1998) Cladoceran grazing in Lake Võrtsjärv. Limnologica 28:67–74Google Scholar
  34. Pace ML, McManus GB, Findlay EG (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808CrossRefGoogle Scholar
  35. Parsons TR, Strickland JDH (1959) Proximate analysis of marine standing crops. Nature 184:2038–2039CrossRefGoogle Scholar
  36. Pedrós-Alió C, Brock TD (1983) The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshw Biol 13:227–239CrossRefGoogle Scholar
  37. Peterson BJ, Hobbie JE, Haney JF (1978) Daphnia grazing on natural bacteria. Limnol Oceaonogr 23:1039–1044CrossRefGoogle Scholar
  38. Pidgeon RWJ, Gardiner G (1987) Freshwater fauna of the Larsemann Hills. 1986–87 Australian Antarctic Research Program, Initial Field Reports. Antarctic Division, HobartGoogle Scholar
  39. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  40. Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Lyons WB (1999) Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49:997–1008CrossRefGoogle Scholar
  41. Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052CrossRefGoogle Scholar
  42. Riemann B (1985) Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl Environ Microbiol 50:187–193PubMedGoogle Scholar
  43. Riemann B, Bosselmann S (1984) Daphnia grazing on natural populations of bacteria. Verh Int Ver Theor Angew Limnol 22:795–799Google Scholar
  44. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  45. Säwström C, Anesio AM, Granéli W, Laybourn-Parry J (2007) Seasonal viral loop dynamics in two large ultra-oligotrophic Antarctic freshwater lakes. Microb Ecol 53:1–11PubMedCrossRefGoogle Scholar
  46. Theil-Nielsen J, Søndergaard M (1998) Bacterial carbon biomass calculated from biovolumes. Arch Hydrobiol 141:195–207Google Scholar
  47. Wetzel RG, Likens GE (2000) Collection, enumeration, and biomass of zooplankton. In: Limnological analyses, 3rd edn. Springer, New York, pp 175–188Google Scholar
  48. Wylie JL, Currie DJ (1991) The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol Oceanogr 36:708–728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christin Säwström
    • 1
    • 4
    Email author
  • Jan Karlsson
    • 1
  • Johanna Laybourn-Parry
    • 2
  • Wilhelm Granéli
    • 3
  1. 1.Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental ScienceUmeå UniversityAbiskoSweden
  2. 2.The Institute for Antarctic and Southern Ocean StudiesUniversity of TasmaniaHobartAustralia
  3. 3.Department of LimnologyLund UniversityLundSweden
  4. 4.Australian Rivers InstituteGriffith UniversityNathanAustralia

Personalised recommendations