Polar Biology

, Volume 32, Issue 7, pp 1055–1065 | Cite as

Biogeochemical conditions and ice algal photosynthetic parameters in Weddell Sea ice during early spring

  • Klaus Martin Meiners
  • S. Papadimitriou
  • D. N. Thomas
  • L. Norman
  • G. S. Dieckmann
Original Paper


Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.


Sea ice Antarctic Weddell Sea Biogeochemistry PAM Photosynthesis Ice algae 



We thank the captain and crew of RV Polarstern for their cooperation during cruise ANT XXIII-7, as well as those who supported our work in the field. Our laboratory work on the ship was supported by E. Allhusen, C. Uhlig, M. Kramer and R. Kiko. We thank M. Raateoja, K. Ryan and an anonymous reviewer for their helpful comments on an earlier draft of the manuscript. The work of DNT, LN and SP was funded by NERC, UK. This work was supported by the Australian Government’s Cooperative Research Centre program through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC).


  1. Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11:643–647. doi: 10.1007/BF00237960 CrossRefGoogle Scholar
  2. Arar EJ, Collins GB (1997) Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, vol 445. U.S. EPA Publication, Cincinnati, pp 1–17Google Scholar
  3. Arrigo KR (2003) Primary production in sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell Publishing, Oxford, pp 143–183Google Scholar
  4. Arrigo KR, Sullivan CW (1992) The influence of salinity and temperature covariation on the photophysiological characteristics of Antarctic sea ice microalgae. J Phycol 28:746–756. doi: 10.1111/j.0022-3646.1992.00746.x CrossRefGoogle Scholar
  5. Arrigo KR, Thomas DN (2004) The importance of sea ice for the Southern Ocean ecosystem. Antarct Sci 16:471–486. doi: 10.1017/S0954102004002263 CrossRefGoogle Scholar
  6. Arrigo KR, Lizotte MP, Worthen DL, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397. doi: 10.1126/science.276.5311.394 PubMedCrossRefGoogle Scholar
  7. Arrigo KR, Robinson DH, Dunbar RB, Leventer AR, Lizotte MP (2003) Physical control of chlorophyll a, POC, and PON distributions in the pack ice of the Ross Sea, Antarctica. J Geophys Res 108(C10):3316. doi: 10.1029/2001JC001138 CrossRefGoogle Scholar
  8. Assur A (1958) Composition of sea ice and its tensile strength. Publ Natl Res Counc Can 598:106–138Google Scholar
  9. Brierley AS, Thomas DN (2002) The ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–278. doi: 10.1016/S0065-2881(02)43005-2 PubMedCrossRefGoogle Scholar
  10. Cota GF, Smith REH (1991) Ecology of bottom ice algae: III. Comparative physiology. J Mar Syst 2:297–315. doi: 10.1016/0924-7963(91)90038-V CrossRefGoogle Scholar
  11. Delille B, Jourdain B, Borges AV, Tison J-L, Delille D (2007) Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol Oceanogr 52:1367–1379Google Scholar
  12. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13. doi: 10.1007/BF00239960 CrossRefGoogle Scholar
  13. Frankenstein G, Garner R (1967) Equations for determining the brine volume of sea ice from −0.5° to −22.9 °C. J Glaciol 6:943–944Google Scholar
  14. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239. doi: 10.1007/BF00443401 CrossRefGoogle Scholar
  15. Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230. doi: 10.1016/0022-0981(93)90054-R CrossRefGoogle Scholar
  16. Gleitz M, van den Rutgers LM, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91. doi: 10.1016/0304-4203(95)00053-T CrossRefGoogle Scholar
  17. Gleitz M, Kukert H, Riebesell U, Dieckmann GS (1996) Carbon acquisition and growth of Antarctic sea ice diatoms in closed bottle incubations. Mar Ecol Prog Ser 135:169–177. doi: 10.3354/meps135169 CrossRefGoogle Scholar
  18. Glud RN, Rysgaard S, Kühl M (2002) A laboratory study on O2 dynamics and photosynthesis in ice algal communities: quantification by microsensors, O2 exchange rates, 14C incubations and a PAM fluorometer. Aquat Microb Ecol 27:301–311. doi: 10.3354/ame027301 CrossRefGoogle Scholar
  19. Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241. doi: 10.1126/science.282.5397.2238 PubMedCrossRefGoogle Scholar
  20. Gradinger R (2008) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Res Part II Top Stud Oceanogr. doi: 10.1016/j.dsr2.2008.10.016
  21. Grose M, McMinn A (2003) Algal biomass in east Antarctic pack ice: how much is in the east? In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context, proceedings of the VIII SCAR international biology symposium. Backhuys Publishers, Leiden, pp 21–25Google Scholar
  22. Günther S, Gleitz M, Dieckmann GS (1999) Biogeochemistry of Antarctic sea ice: a case study on platelet ice layers at Drescher Inlet, Weddell Sea. Mar Ecol Prog Ser 177:1–13. doi: 10.3354/meps177001 CrossRefGoogle Scholar
  23. Harrison WG, Platt T (1986) Photosynthesis–irradiance relationships in polar and temperate phytoplankton populations. Polar Biol 5:153–165. doi: 10.1007/BF00441695 CrossRefGoogle Scholar
  24. Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota 1. Habitat, terminology, and methodology. Polar Biol 12:417–427. doi: 10.1007/BF00243113 CrossRefGoogle Scholar
  25. Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199. doi: 10.1111/j.0022-3646.1995.00181.x CrossRefGoogle Scholar
  26. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res Part I Oceanogr Res Pap 49:2163–2181. doi: 10.1016/S0967-0637(02)00122-X CrossRefGoogle Scholar
  27. Kristiansen S, Farbrot T, Kuosa H, Myklestad SM, von Quillfeldt CH (1998) Nitrogen uptake in the infiltration community, an ice algal community in Antarctic pack-ice. Polar Biol 19:307–315. doi: 10.1007/s003000050251 CrossRefGoogle Scholar
  28. Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73. doi: 10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2 CrossRefGoogle Scholar
  29. McMinn A, Hegseth EN (2004) Quantum yield and photosynthetic parameters of marine microalgae from the southern Arctic Ocean, Svalbard. J Mar Biol Assoc UK 84:865–871. doi: 10.1017/S0025315404010112h CrossRefGoogle Scholar
  30. McMinn A, Ryan K, Gademann R (2003) Diurnal changes in photosynthesis of Antarctic fast ice algal communities determined by pulse amplitude modulation (PAM) fluorometry. Mar Biol (Berl) 143:359–367. doi: 10.1007/s00227-003-1052-5 CrossRefGoogle Scholar
  31. McMinn A, Pankowski A, Delfatti T (2005) Effect of hyperoxia on the growth and photosynthesis of polar sea ice microalgae. J Phycol 41:732–741. doi: 10.1111/j.1529-8817.2005.00095.x CrossRefGoogle Scholar
  32. McMinn A, Ryan KG, Ralph PJ, Pankowski A (2007) Spring sea ice photosynthesis, primary production and biomass distribution in eastern Antarctica, 2002–2004. Mar Biol (Berl) 151:985–995. doi: 10.1007/s00227-006-0533-8 CrossRefGoogle Scholar
  33. McMinn A, Hattori H, Hirawake T, Iwamota A (2008) Preliminary investigation of Okhotsk Sea ice algae; taxonomic composition and photosynthetic activity. Polar Biol 31:1011–1015. doi: 10.1007/s00300-008-0433-0 CrossRefGoogle Scholar
  34. Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296. doi: 10.3354/ame035283 CrossRefGoogle Scholar
  35. Mock T (2002) In situ primary production in young Antarctic sea ice. Hydrobiologia 470:127–132. doi: 10.1023/A:1015676022027 CrossRefGoogle Scholar
  36. Papadimitriou S, Thomas DN, Kennedy H, Haas C, Kuosa H, Krell A, Dieckmann GS (2007) Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol Oceanogr 52:1809–1823Google Scholar
  37. Perovich DK (1996) The optical properties of sea ice. CRREL Monogr 96–1:1–24Google Scholar
  38. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  39. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool for the assessment of Photosynthetic activity. Aquat Bot 82:222–237. doi: 10.1016/j.aquabot.2005.02.006 CrossRefGoogle Scholar
  40. Ralph PJ, McMinn A, Ryan K, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769. doi: 10.1111/j.1529-8817.2005.00106.x CrossRefGoogle Scholar
  41. Ralph PJ, Ryan KG, Martin A, Fenton G (2007) Melting-out of sea-ice algae causes greater photosynthetic stress than freezing-in. J Phycol 43:948–956. doi: 10.1111/j.1529-8817.2007.00382.x CrossRefGoogle Scholar
  42. Raven JA, Johnston AM, Parsons R, Kubler J (1994) The influence of natural and experimental high O2 concentrations on O2-evolving phototrophs. Biol Rev Camb Philos Soc 69:61–94. doi: 10.1111/j.1469-185X.1994.tb01486.x CrossRefGoogle Scholar
  43. Reay DS, Nedwell DB, Priddle J, Ellis-Evans JC (1999) Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl Environ Microbiol 65:2577–2584PubMedGoogle Scholar
  44. Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248. doi: 10.1007/BF00238457 CrossRefGoogle Scholar
  45. Ryan KG, Ralph P, McMinn A (2004) Acclimation of Antarctic bottom ice algal communities to lowered salinities during melting. Polar Biol 27:679–686. doi: 10.1007/s00300-004-0636-y CrossRefGoogle Scholar
  46. Schreiber U (2004) Pulse amplitude (PAM) fluorometry and saturation pulse method. In: Papageorgiou G, Govindjee G (eds) Chlorophyll fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration series. Kluwer Academic Publishers, Dordrecht, pp 270–319Google Scholar
  47. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644. doi: 10.1126/science.1063391 PubMedCrossRefGoogle Scholar
  48. Thomas DN, Dieckmann GS (2003) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell Publishing, OxfordGoogle Scholar
  49. Thomas DN, Papadimitriou S (2003) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell Publishing, Oxford, pp 267–302Google Scholar
  50. Weissenberger J (1992) The environmental conditions in brine channels of Antarctic sea ice (in German). Rep Polar Res 111:1–149Google Scholar
  51. Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi: 10.1029/2007JC004254 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Klaus Martin Meiners
    • 1
  • S. Papadimitriou
    • 2
  • D. N. Thomas
    • 2
  • L. Norman
    • 2
  • G. S. Dieckmann
    • 3
  1. 1.Antarctic Climate and Ecosystems Cooperative Research CentreHobartAustralia
  2. 2.School of Ocean Sciences, College of Natural SciencesBangor UniversityAngleseyUK
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations