Polar Biology

, Volume 32, Issue 6, pp 879–895

Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring

  • S. Becquevort
  • I. Dumont
  • J.-L. Tison
  • D. Lannuzel
  • M.-L. Sauvée
  • L. Chou
  • V. Schoemann
Original Paper

Abstract

Pack ice, brines and seawaters were sampled in October 2003 in the East Antarctic sector to investigate the structure of the microbial communities (algae, bacteria and protozoa) in relation to the associated physico-chemical conditions (ice structure, temperature, salinity, inorganic nutrients, chlorophyll a and organic matter). Ice cover ranged between 0.3 and 0.8 m, composed of granular and columnar ice. The brine volume fractions sharply increased above −4°C in the bottom ice, coinciding with an important increase of algal biomass (up to 3.9 mg C l−1), suggesting a control of the algae growth by the space availability at that period of time. Large accumulation of NH4+ and PO43− was observed in the bottom ice. The high pool of organic matter, especially of transparent exopolymeric particles, likely led to nutrients retention and limitation of the protozoa grazing pressure, inducing therefore an algal accumulation. In contrast, the heterotrophs dominated in the underlying seawaters.

Keywords

Sea ice Brine volume fraction Nutrients Organic carbon Sympagic organisms 

References

  1. Arrigo KR (2003) Primary production in sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 143–183Google Scholar
  2. Arrigo KR, Sullivan CW (1994) A high resolution bio-optical model of microalgal growth: tests using sea ice algal community time series data. Limnol Oceanogr 39:609–631Google Scholar
  3. Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98(4):6929–6946CrossRefGoogle Scholar
  4. Arrigo KR, Dieckmann GS, Robinson DH, Fritsen CH, Sullivan CW (1995) A high resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient and production profiles within a dense microalgal bloom. Marine Ecol Prog Ser 127:255–268CrossRefGoogle Scholar
  5. Becquevort S (1997) Nanoprotozooplankton in the Atlantic sector of the Southern Ocean during early spring: biomass and feeding activities. Deep Sea Res II 44:355–373CrossRefGoogle Scholar
  6. Becquevort S, Mathot S, Lancelot C (1992) Interactions in the microbial community of the marginal ice zone of the northwestern Weddell Sea through size distribution analysis. Polar Biol 12:211–218CrossRefGoogle Scholar
  7. Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572CrossRefGoogle Scholar
  8. Clarke DB, Ackley SF (1984) Sea ice structure and biological activity in the antarctic marginal ice zone. J Geophys Res 89(C4):2087–2096CrossRefGoogle Scholar
  9. Comiso JC (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 112–142Google Scholar
  10. Cota GF, Anning JL, Harris LR, Harrisson WG, Smith REH (1990) The impact of ice algae on inorganic nutrients in seawater and sea ice in Barrow Strait, NWT, Canada during spring. Can J Fish Aquat Sci 47:1402–1415CrossRefGoogle Scholar
  11. Cox GFN, Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J Glaciol 29(102):306–316Google Scholar
  12. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular Genetics. Microbiol Mol Biol Rev 64:847–853PubMedCrossRefGoogle Scholar
  13. De Baar HJW, de Jong JTM (2001) Distributions, sources and sinks of iron in seawater. In: Turner D, Hunter KA (eds) Biogeochemistry of iron in seawater, IUPAC book series on analytical and physical chemistry of environmental systems, vol 7. Wiley, New York, pp 123–253Google Scholar
  14. Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, BerlinGoogle Scholar
  15. Dieckmann GS, Hellmer HH (2003) In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 143–183Google Scholar
  16. Dieckmann GS, Lange MA, Ackley SF, Jr Jennings (1991) The nutrient status in sea ice of the Weddell Sea during winter: effects of sea ice texture and algae. Polar Biol 11:449–456CrossRefGoogle Scholar
  17. Dumont I, Schoemann V, Lannuzel D, Chou L, Tison J-L, Becquevort S (2009) Distribution and characterization of dissolved and particulate organic matter in Antarctic pack ice. Polar Biol. doi:10.1007/s00300-008-0577-y
  18. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13CrossRefGoogle Scholar
  19. Eicken H (1998) Deriving modes and rates of ice growth in the Weddell Sea from microstructural, salinity and stable-isotope data. In: Jeffries MO (ed) Antarctic sea ice: physical processes, interactions and variability, vol 74. American Geophysical Union, Washington DC, pp 89–122Google Scholar
  20. Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 22–81Google Scholar
  21. Eicken H, Ackley SF, Richter-Menge JA, Lange MA (1991) Is the strength of sea ice related to its chlorophyll content? Polar Biol 11:347–350CrossRefGoogle Scholar
  22. Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecol Prog Ser 219:1–10CrossRefGoogle Scholar
  23. Fischer H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, San Diego, pp 285–313Google Scholar
  24. Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protests. Springer, BerlinGoogle Scholar
  25. Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 224–268Google Scholar
  26. Garrison DL (1991) Antarctic sea ice biota. Am Zool 31:17–33Google Scholar
  27. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239CrossRefGoogle Scholar
  28. Garrison DL, Close AR (1993) Winter ecology of the sea ice biota in Weddell Sea pack ice. Marine Ecol Prog Ser 96:17–31CrossRefGoogle Scholar
  29. Garrison DL, Mathot S (1996) Pelagic and sea ice microbial communities. In: Hofmann EE, Quetin LB (eds) Foundations for ecological research West of the Antarctic Peninsula R. M. Ross, Antarctic Res Ser 70:155–172Google Scholar
  30. Garrison DL, Sullivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. Biosciences 36(4):243–250CrossRefGoogle Scholar
  31. Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572Google Scholar
  32. Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 1(4):313–316CrossRefGoogle Scholar
  33. Gasol JM, del Giorgio PA, Duarte CM (1997) Biomass distribution in marine planktonic communities. Limnol Oceanogr 42:1353–1363Google Scholar
  34. Giani M, Berto D, Zangrando V, Castelli S, Sist P, Urbani R (2005) Chemical characterisation of different typologies of mucilaginous aggregates in the northern Adriatic Sea. Sci Total Environ 353:232–246PubMedCrossRefGoogle Scholar
  35. Giesenhagen HC, Detmer AE, de Wall J, Weber A, Gradinger RR, Jochem FJ (1999) How are Antarctic planktonic microbial food webs and algal blooms affected by melting of sea ice? Microcosm simulations. Aquat Microb Ecol 20:183–201CrossRefGoogle Scholar
  36. Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241PubMedCrossRefGoogle Scholar
  37. Granskog MA, Kaartokallio H, Shirasawa K (2003) Nutrients status of Baltic Sea ice—evidence for control by snow-ice formation, ice permeability and ice algae. J Geophysical Res 108(C8): 3253. doi: 10.1029/2002JC001386 Google Scholar
  38. Grasshoff K, Erhard M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag-Chemie, WeinheimGoogle Scholar
  39. Grossi SM, Kottmeier ST, Sullivan CW (1984) Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria, McMurdo Sound, Antarctica. Microb Ecol 10:231–242CrossRefGoogle Scholar
  40. Grossmann S (1994) Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb Ecol 28:1–18CrossRefGoogle Scholar
  41. Grossmann S, Dieckmann GS (1994) Bacterial standing stock, activity, and carbon production during formation and growth of sea ice in the Weddell Sea, Antarctica. Appl Environ Microbiol 60:2746–2753PubMedGoogle Scholar
  42. Grossmann S, Gleitz M (1993) Microbial responses to experimental sea-ice formation, implications for the establishment of Antarctic sea-ice communities. J Exp Marine Biol Ecol 173:273–289CrossRefGoogle Scholar
  43. Guglielmo L, Carrada GC, Catalano G, Dell’Anno A, Fabiano M, Lazzara L, Mangoni O, Pusceddu A, Saggiomo V (2000) Structural and functional properties of sympagic communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 23:137–146CrossRefGoogle Scholar
  44. Hillebrand H, Dürselen CD, Kirschtel D, Zohary T, Pollingher U (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  45. Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427CrossRefGoogle Scholar
  46. Jeffries MO, Krouse HR, Sackinger WM, Serson HV (1989) Stable-isotope (18O/16O) tracing of fresh, brackish and sea ice in multiyear land-fast sea ice, Ellesmere Island, Canada. J Glaciol 35:9–16Google Scholar
  47. Joubert L-M, Wolfaardt GM, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187–197PubMedCrossRefGoogle Scholar
  48. Kähler P, Bjornsen PK, Lochte K, Antia A (1997) Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep Sea Res II 44:341–353CrossRefGoogle Scholar
  49. Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Marine Ecol Prog Ser 277:1–12CrossRefGoogle Scholar
  50. Kepkay PF (2000) Colloids and the ocean carbon cycle. In: Wangersky P (ed) The handbook of environmental chemistry, vol 5. Part D: Marine chemistry. Springer, Berlin, pp 35–56Google Scholar
  51. Kottmeier ST, Sullivan CW (1990) Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones. Deep Sea Res I 37:1311–1330CrossRefGoogle Scholar
  52. Kottmeier ST, Grossi SM, Sullivan CW (1987) Sea ice microbial communities. VIII. Bacterial production in annual sea ice of McMurdo Sound, Antarctica. Marine Ecol Prog Ser 35:175–186CrossRefGoogle Scholar
  53. Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particle across the ice–water interface of melting first-year sea ice in the Laptev Sea (Arctic). Marine Biol 138:173–185CrossRefGoogle Scholar
  54. Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Marine Biol Ecol 243:55–80CrossRefGoogle Scholar
  55. Krembs C, Mock T, Gradinger R (2001) A mesocosm study of physical–biological interactions in artificial sea ice: effects of brine channel surface evolution and brine movement on algal biomass. Polar Biol 24:356–364CrossRefGoogle Scholar
  56. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Artic winter ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res I 49:2163–2181CrossRefGoogle Scholar
  57. Lannuzel D, de Jong JTM, Schoemann V, Trevena A, Tison J-L, Chou L (2006) Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556(2):476–483CrossRefGoogle Scholar
  58. Lannuzel D, Schoemann V, de Jong J, Tison J-L, Chou L (2007) Distribution and biogeochemical behaviour of iron in East Antarctica Sea ice. Marine Chem 106(1):18–32CrossRefGoogle Scholar
  59. Lepparänta M, Manninen T (1988) The brine and gas content of sea ice with attention to low salinities and high temperatures. Finnish Institute Marine Research Internal Report, 88–82, HelsinkiGoogle Scholar
  60. Leventer A (2003) Particulate flux from sea ice in polar waters. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 303–332Google Scholar
  61. Lizotte MP (2003) The microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 184–210Google Scholar
  62. Maranger R, Pullin MJ (2003) Elemental complexation by dissolved organic matter in lakes: implications for Fe speciation and the bioavailability of Fe and P. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier, New York, pp 186–214Google Scholar
  63. Mari X, Burd A (1998) Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Marine Ecol Prog Ser 163:63–76CrossRefGoogle Scholar
  64. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840CrossRefGoogle Scholar
  65. Mathot S, Becquevort S, Lancelot C (1992) Fate of sea-ice biota at the time of ice melting in the north-western part of the Weddell Sea. Polar Res 10:267–275CrossRefGoogle Scholar
  66. Meese DA (1989) The chemical and structural properties of sea ice in the southern Beaufort Sea. CRRELL Report 89–25. US Army Cold Region Research and Engineering Laboratory, Hanover, NH, p 144Google Scholar
  67. Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Marine Ecol Prog Ser 248:1–13CrossRefGoogle Scholar
  68. Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296CrossRefGoogle Scholar
  69. Meiners K, Krembs C, Gradinger R (2008) Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquat Microb Ecol 52:195–207CrossRefGoogle Scholar
  70. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579Google Scholar
  71. Millero FJ (1996) Chemical oceanography, 2nd edn edn. CRC Press, Boca Raton, p 469Google Scholar
  72. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microb 7(5):605–619CrossRefGoogle Scholar
  73. Nelson DM, Brzezinski MA, Sigmon DE, Franck VM (2001) A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res II 48:3973–3995CrossRefGoogle Scholar
  74. Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147CrossRefGoogle Scholar
  75. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. Antarctic microbiology. Wiley-Liss, Wilmington, pp 167–218Google Scholar
  76. Papadimitriou S, Thomas DN, Kennedy H, Haas C, Kuosa H, Krell A, Dieckmann GS (2007) Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol Oceanogr 52(5):1809–1823Google Scholar
  77. Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Marine Ecol Prog Ser 192:1–11CrossRefGoogle Scholar
  78. Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm—the role of transparent exopolymer particles (Tep). Deep Sea Res II 42:99–109CrossRefGoogle Scholar
  79. Perovich DK, Gow AJ (1996) A quantitative description of sea ice inclusions. J Geophys Res 101(8):18327–18343CrossRefGoogle Scholar
  80. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  81. Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248CrossRefGoogle Scholar
  82. Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances (EPS) on the Mackenzie Shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206CrossRefGoogle Scholar
  83. Riedel A, Michel C, Gosselin M, LeBlanc B (2007a) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Marine Ecol Prog Ser 342:55–67CrossRefGoogle Scholar
  84. Riedel A, Michel C, Gosselin M (2007b) Grazing of large-sized bacteria by sea-ice heterotrophic protists on the Mackenzie Shelf during the winter-spring transition. Aquat Microb Ecol 50:25–38CrossRefGoogle Scholar
  85. Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42CrossRefGoogle Scholar
  86. Scharek R, Smetacek V, Fahrbach E, Gordon LI, Rohardt G, Moore S (1994) The transition from winter to early spring in the eastern Weddell Sea, Antarctica: plankton biomass and composition in relation to hydrography and nutrients. Deep Sea Res 41:1231–1250CrossRefGoogle Scholar
  87. Scott FJ, Davidson AT, Marchant HJ (2001) Grazing by the antarctic sea-ice ciliate Pseudocohnilembus. Polar Biol 24:127–131CrossRefGoogle Scholar
  88. Shen HT, Ackermann NL (1990) Wave-induced sediment enrichment in coastal ice covers. In: Ackley SF, Weeks WF (eds) Sea ice properties and processes, proceedings of the WF Weeks Sea ice symposium, CRREL Monograph, 90–1, American Society for testing and materials. pp 100–102Google Scholar
  89. Simon M, Azam F (1989) Protein content and protein synthesis rate of planktonic marine bacteria. Marine Ecol Prog Ser 51:201–213CrossRefGoogle Scholar
  90. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211CrossRefGoogle Scholar
  91. Sommer U (1986) Nitrate and silicate-competition among Antarctic phytoplankton. Marine Biol 91:345–351CrossRefGoogle Scholar
  92. Spindler M, Dieckmann GS, Lange MA (1990) Seasonal and geographic variations in sea ice community structure of the Weddell Sea, Antarctica. In: Kerry KR, Hempel G (eds) Antarctic ecosystem. Ecological change and conservation. Springer, Berlin, pp 129–135Google Scholar
  93. Stewart FJ, Fritsen CH (2004) Bacteria–algae relationships in Antarctic Sea ice. Antarct Sci 16(2):143–156CrossRefGoogle Scholar
  94. Sugimura Y, Suzuki Y (1988) A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chem 24:105–131CrossRefGoogle Scholar
  95. Taylor WD (1978) Growth response of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214CrossRefGoogle Scholar
  96. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644PubMedCrossRefGoogle Scholar
  97. Thomas DN, Papadimitriou S (2003) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 267–332Google Scholar
  98. Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biol 15:477–483CrossRefGoogle Scholar
  99. Thomas DN, Lara RJ, Haas C, Schnack-Schiel SB, Dieckmann GS, Kattner G, Nöthig E-M, Mizdalski E (1998) Biological soup within decaying summer sea ice in the Bellingshausen Sea. Antarct Res Ser 73:161–171Google Scholar
  100. Tison J-L, Lancelot C, Chou L, Lannuzel D, de Jong J, Schoemann V, Becquevort S, Trevena A, Verbeke V, Lorrain R, Delille B (2005) Biogéochimie de la glace de mer dans la perspective des changements climatiques. Annual report ARC 2003–2004, pp 71Google Scholar
  101. Tison J-L, Worby A, Delille B, Brabant F, Papadimitriou S, Thomas D, de Jong J, Lannuzel D, Haas C (2008) Thermodynamic evolution of decaying summer first-year sea ice at ISPOL (Western Weddell Sea, Antarctica). Deep Sea Res II 55:975–987CrossRefGoogle Scholar
  102. Utermölh H (1958) Zur Vervelkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38Google Scholar
  103. Watson SW, Novitsky TJ, Quinby HL, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 33:940–946PubMedGoogle Scholar
  104. Weeks WF, Ackley SF (1986) The growth, structure and properties of sea ice. In: Untersteiner N (ed) The geophysics of sea ice. NATO ASI Series B, Physics. Martinus Nyhoff, Dordrecht 146:9–164Google Scholar
  105. Weissenberger J, Grossmann S (1998) Experimental formation of sea ice: importance of water circulation and wave action for incorporation of phytoplankton and bacteria. Polar Biol 20:178–188CrossRefGoogle Scholar
  106. Wetherbee R, Lind JL, Burke J (1998) The forst kiss: establishment and control of initial adhesion of raphid diatoms. J Phycol 34:9–15CrossRefGoogle Scholar
  107. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytine by fluorescence. Deep Sea Res 10:221–231Google Scholar
  108. Zwally HJ, Parkinson CL, Comiso JC (1983) Variability of Antarctic Sea ice and changes in carbon dioxide. Science 220:1005–1012PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Becquevort
    • 1
  • I. Dumont
    • 1
  • J.-L. Tison
    • 2
  • D. Lannuzel
    • 3
    • 4
  • M.-L. Sauvée
    • 3
  • L. Chou
    • 3
  • V. Schoemann
    • 1
  1. 1.Ecologie des Systèmes Aquatiques, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Unité de Glaciologie, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Antarctic Climate and Ecosystems CRCUniversity of TasmaniaHobartAustralia

Personalised recommendations