Advertisement

Polar Biology

, Volume 32, Issue 5, pp 733–750 | Cite as

Distribution and characterization of dissolved and particulate organic matter in Antarctic pack ice

  • I. DumontEmail author
  • V. Schoemann
  • D. Lannuzel
  • L. Chou
  • J.-L. Tison
  • S. Becquevort
Original Paper

Abstract

Distribution and composition of organic matter were investigated in Antarctic pack ice in early spring and summer. Accumulation of organic compounds was observed with dissolved organic carbon (DOC) and particulate organic carbon (POC) reaching 717 and 470 μM C, respectively and transparent exopolymeric particles (TEP) up to 3,071 μg Xanthan gum equivalent l−1. POC and TEP seemed to be influenced mainly by algae. Particulate saccharides accounted for 0.2–24.1% (mean, 7.8%) of POC. Dissolved total saccharides represented 0.4–29.6% (mean, 9.7%) of DOC, while dissolved free amino acids (DFAA) accounted for only 1% of DOC. Concentrations of TEP were positively correlated with those of saccharides. Monosaccharides (d-MCHO) dominated during winter–early spring, whereas dissolved polysaccharides did in spring–summer. DFAA were strongly correlated with d-MCHO, suggesting a similar pathway of production. The accumulation of monomers in winter is thought to result from limitation of bacterial activities rather than from the nature of the substrates.

Keywords

Sea ice Organic carbon Monosaccharides Polysaccharides Amino acids TEP 

Notes

Acknowledgments

I. Dumont is supported by a FRIA (Fonds pour la Recherche en Industries Agronomiques) grant. The authors are grateful to the officers and crews of the R.V. Aurora Australis and RV Polarstern for their logistic assistance during the ARISE and ISPOL cruises. We would like to thank the Australian Antarctic Division, especially Ian Allison (Expedition Leader) and Rob Massom (Chief Scientist), for inviting us on the “ARISE in the East” endeavour and the AWI, especially Michael Spindler, David Thomas and Gerhard Dieckmann for allowing us to take part in the ISPOL campaign. The supports from Bruno Delille and Jeroen de Jong for field assistance, from Anne Trevena for her great help in the organization of the ARISE cruise, ice core sub-sampling and salinity measurements are greatly acknowledged. Frédéric Brabant is warmly thanked for helping with core handling. This work was carried out in the framework of the Belgian research program Action de Recherche Concertée “Sea Ice Biogeochemistry in a CLIMate change perspective” (ARC-SIBCLIM) financed by the Belgian French Community under contract no ARC-02/7- 318287. This is also a contribution to the European Network of Excellence EUR–OCEANS (contract no 511106-2) and to the BELCANTO project (contracts SD/CA/03A&B) financed by the Belgian Federal Science Policy Office. The present study is a Belgian input to the SOLAS international research initiative.

References

  1. Alderkamp AC, Buma AGJ, van Rijssel M (2007) The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry 83:99–118CrossRefGoogle Scholar
  2. Amon RMW, Fitznar HP, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297Google Scholar
  3. Becquevort S, Dumont I, Tison J-L, Lannuzel D, Sauvée M-L, Chou L, Schoemann V (2008) Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring. Polar Biol (in revision)Google Scholar
  4. Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, New York, pp 59–90CrossRefGoogle Scholar
  5. Bertilsson S, JBJr Jones (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosytems: interactivity of dissolved organic matter. Academic Press, New York, pp 4–24Google Scholar
  6. Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518Google Scholar
  7. Bratbak G (1985) Bacterial biovolume and biomass estimations. Appl Environ Microbiol 49:1488–1493PubMedGoogle Scholar
  8. Brierley AS, Thomas DN (2002) Ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–276PubMedCrossRefGoogle Scholar
  9. Burney CM, Sieburth JM (1977) Dissolved carbohydrates in seawater. 2. A spectrophotometric procedure for total carbohydrates analysis and polysaccharides determination. Mar Chem 5:15–28CrossRefGoogle Scholar
  10. Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, New York, pp 91–152CrossRefGoogle Scholar
  11. Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572CrossRefGoogle Scholar
  12. Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature 332:441–443CrossRefGoogle Scholar
  13. Corzo A, Rodriguez-Galvez S, Lubian L, Sangra P, Martinez A, Morillo JA (2005) Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. J Plankton Res 27:635–646CrossRefGoogle Scholar
  14. Decho AW (1990) Microbial exopolymer secretions in ocean environments—their role(s) in food webs and marine processes. Oceanogr Mar Biol 28:73–153Google Scholar
  15. del Giorgio P, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541CrossRefGoogle Scholar
  16. Delille D (1992) Marine bacterioplankton at the Weddell Sea ice edge, distribution of psychrophilic and psychrotrophic populations. Polar Biol 12:205–210CrossRefGoogle Scholar
  17. Dieckmann GS, Rohardt G, Hellmer H, Kipfstuhl J (1986) The occurrence of ice platelets at 250 m depth near the Filchner Ice Shelf and its significance for sea ice biology. Deep Sea Res 33:141–148CrossRefGoogle Scholar
  18. Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Res Part I 51:83–92CrossRefGoogle Scholar
  19. Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar Ecol Prog Ser 219:1–10CrossRefGoogle Scholar
  20. Fabiano M, Povero P, Danovaro R (1993) Distribution and composition of particulate organic-matter in the Ross Sea (Antarctica). Polar Biol 13:525–533CrossRefGoogle Scholar
  21. Fabiano M, Povero P, Danovaro R (1996) Particulate organic matter composition in Terra Nova Bay (Ross Sea, Antarctica) during summer 1990. Antarct Sci 8:7–13CrossRefGoogle Scholar
  22. Fuhrman JA, Ferguson RL (1986) Low concentrations and rapid turnover of dissolved free amino acids in seawater: chemical and microbiological measurements. Mar Ecol Prog Ser 33:237–242CrossRefGoogle Scholar
  23. Garrison DL, Buck KR (1986) Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biol 6:237–239CrossRefGoogle Scholar
  24. Garrison DL, Close AR (1993) Winter ecology of the sea-ice biota in Weddell Sea pack ice. Mar Ecol Prog Ser 96:17–31CrossRefGoogle Scholar
  25. Garrison DL, Ackley SF, Buck KR (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306:363–365CrossRefGoogle Scholar
  26. Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 1:313–316CrossRefGoogle Scholar
  27. Garrison DL, Jeffries MO, Gibson A, Coale SL, Neenan D, Fritsen C, Okolodkov YB, Gowing MM (2003) Development of sea ice microbial communities during autumn ice formation in the Ross Sea. Mar Ecol Prog Ser 259:1–15CrossRefGoogle Scholar
  28. Geider RJ (1999) Biological oceanography—complex lessons of iron uptake. Nature 400:815–816CrossRefGoogle Scholar
  29. Giannelli V, Thomas DN, Haas C, Kattner G, Kennedy H, Dieckmann GS (2001) Behaviour of dissolved organic matter and inorganic nutrients during experimental sea-ice formation. Ann Glaciol 33:317–321CrossRefGoogle Scholar
  30. Giesenhagen HC, Detmer AE, de Wall J, Weber A, Gradinger RR, Jochem FJ (1999) How are Antarctic planktonic microbial food webs and algal blooms affected by melting of sea ice? Microcosm simulations. Aquat Microb Ecol 20:183–201CrossRefGoogle Scholar
  31. Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–1252Google Scholar
  32. Granskog M, Kaartokallio H, Kuosa H, Thomas D, Ehn J, Sonninen E (2005) Scales of horizontal patchiness in chlorophyll a, chemical and physical properties of landfast sea ice in the Gulf of Finland (Baltic Sea). Polar Biol 28:276–283CrossRefGoogle Scholar
  33. Grossmann S, Dieckmann GS (1994) Bacterial standing stock, activity and carbon production during formation and growth of sea ice in the Weddell Sea. Appl Environ Microbiol 60:2746–2753PubMedGoogle Scholar
  34. Guglielmo L, Carrada GC, Catalano G, Dell’Anno A, Fabiano M, Lazzara L, Mangoni O, Pusceddu A, Saggiomo V (2000) Structural and functional properties of sympagic communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 23:137–146CrossRefGoogle Scholar
  35. Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331CrossRefGoogle Scholar
  36. Hellmer HH, Schroder M, Haas C, Dieckmann GS, Spindler M (2008) The ISPOL drift experiment. Deep Sea Res Part II 55:913–917CrossRefGoogle Scholar
  37. Herborg LM, Thomas DN, Kennedy H, Haas C, Dieckmann GS (2001) Dissolved carbohydrates in Antarctic sea ice. Antarct Sci 13:119–125CrossRefGoogle Scholar
  38. Hillebrand H, Dürselen CD, Kirschtel D, Zohary T, Pollingher U (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  39. Hong Y, Smith WO, White AM (1997) Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). J Phycol 33:368–376CrossRefGoogle Scholar
  40. Hubberten U, Lara RJ, Kattner G (1995) Refractory organic-compounds in polar waters—relationship between humic substances and amino-acids in the Arctic and Antarctic. J Mar Res 53:137–149CrossRefGoogle Scholar
  41. Hung CC, Tang DG, Warnken KW, Santschi PH (2001) Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar Chem 73:305–318CrossRefGoogle Scholar
  42. Hung CC, Guo LD, Santschi PH, Alvarado-Quiroz N, Haye JM (2003) Distributions of carbohydrate species in the Gulf of Mexico. Mar Chem 81:119–135CrossRefGoogle Scholar
  43. Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416CrossRefGoogle Scholar
  44. Kähler P, Bjornsen PK, Lochte K, Antia A (1997) Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean. Deep Sea Res Part II 44:341–353CrossRefGoogle Scholar
  45. Kennedy H, Thomas DN, Kattner G, Haas C, Dieckmann GS (2002) Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar Ecol Prog Ser 238:1–13CrossRefGoogle Scholar
  46. Kirchman DL (2000) Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 261–288Google Scholar
  47. Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particles across the ice–water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol 138:173–185CrossRefGoogle Scholar
  48. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res Part I 49:2163–2181CrossRefGoogle Scholar
  49. Lannuzel D, de Jong J, Schoemann V, Trevena A, Tison JL, Chou L (2006) Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556:476–483CrossRefGoogle Scholar
  50. Lannuzel D, Schoemann V, de Jong J, Tison JL, Chou L (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32CrossRefGoogle Scholar
  51. Lannuzel D, Schoemann V, de Jong J, Chou L, Delille B, Becquevort S, Tison JL (2008) Iron study during a time series in the western Weddell pack ice. Mar Chem 108:85–95CrossRefGoogle Scholar
  52. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303PubMedGoogle Scholar
  53. Lizotte MP (2003) The microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice-an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 184–210Google Scholar
  54. Marchant HJ, Scott FJ (1993) Uptake of submicrometer particles and dissolved organic material by Antarctic choanoflagellates. Mar Ecol Prog Ser 92:59–64CrossRefGoogle Scholar
  55. Meiners K, Gradinger R, Fehling J, Civitarese G, Spindler M (2003) Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn. Mar Ecol Prog Ser 248:1–13CrossRefGoogle Scholar
  56. Meiners K, Brinkmeyer R, Granskog MA, Lindfors A (2004) Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat Microb Ecol 35:283–296CrossRefGoogle Scholar
  57. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579Google Scholar
  58. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619PubMedCrossRefGoogle Scholar
  59. Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164CrossRefGoogle Scholar
  60. Myklestad SM, Skanoy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem 56:279–286CrossRefGoogle Scholar
  61. Nagata T (1986) Carbon and nitrogen content of natural planktonic bacteria. Appl Environ Microbiol 52:28–32PubMedGoogle Scholar
  62. Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 121–152Google Scholar
  63. Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111PubMedCrossRefGoogle Scholar
  64. Obernosterer I, Herndl GJ (1995) Phytoplankton extracellular release and bacterial-growth—dependence on the inorganic N-P ratio. Mar Ecol Prog Ser 116:247–257CrossRefGoogle Scholar
  65. Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147CrossRefGoogle Scholar
  66. Pakulski JD, Benner R (1994) Abundance and distribution of carbohydrates in the ocean. Limnol Oceanogr 39:930–940Google Scholar
  67. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218Google Scholar
  68. Parsons TR, Stephens K, Strickland JDH (1961) On the chemical composition of eleven species of marine phytoplankton. J Fish Board Can 18:1001–1016Google Scholar
  69. Parsons TR, Maita Y, Lalli CM (1984) Determination of dissolved free amino acids by fluorimetric analysis. A manual of chemical and biological methods for seawater analysis. Pergamon PressGoogle Scholar
  70. Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11CrossRefGoogle Scholar
  71. Passow U (2002) Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar Ecol Prog Ser 236:1–12CrossRefGoogle Scholar
  72. Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm—the role of transparent exopolymer particles (TEP). Deep Sea Res Part II 42:99–109CrossRefGoogle Scholar
  73. Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204CrossRefGoogle Scholar
  74. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  75. Pusceddu A, Cattaneo-Vietti R, Albertelli G, Fabiano M (1999) Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biol 22:124–132CrossRefGoogle Scholar
  76. Raymond JA (2000) Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23:721–729CrossRefGoogle Scholar
  77. Riedel A, Michel C, Gosselin M (2006) Seasonal study of sea-ice exopolymeric substances (EPS) on the Mackenzie Shelf: implications for transport of sea-ice bacteria and algae. Aquat Microb Ecol 45:195–206CrossRefGoogle Scholar
  78. Riedel A, Michel C, Gosselin M, LeBlanc B (2007) Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie shelf. Mar Ecol Prog Ser 342:55–67CrossRefGoogle Scholar
  79. Schlitzer R. (2008) Ocean data view, http://odv.awi.de
  80. Sherr E, Sherr B (1988) Role of microbes in pelagic food webs—a revised concept. Limnol Oceanogr 33:1225–1227Google Scholar
  81. Simon M, Azam F (1989) Protein content and protein synthesis rate of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213CrossRefGoogle Scholar
  82. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211CrossRefGoogle Scholar
  83. Smith REH, Gosselin M, Kudoh S, Robineau B, Taguchi S (1997) DOC and its relationship to algae in bottom ice communities. J Mar Syst 11:71–80CrossRefGoogle Scholar
  84. Sugimura Y, Suzuki Y (1988) A high-temperature catalytic-oxidation method for the determination of non-volatile dissolved organic-carbon in seawater by direct injection of a liquid sample. Mar Chem 24:105–131CrossRefGoogle Scholar
  85. Thingstad TF, Hagstrom A, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404Google Scholar
  86. Thomas DN, Dieckmann GS (2002) Ocean science—Antarctic Sea ice—a habitat for extremophites. Science 295:641–644PubMedCrossRefGoogle Scholar
  87. Thomas DN, Papadimitriou S (2003) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice-an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 267–302Google Scholar
  88. Thomas DN, Lara RJ, Eicken H, Kattner G, Skoog A (1995) Dissolved organic-matter in Arctic multiyear sea-ice during winter - major components and relationship to ice characteristics. Polar Biol 15:477–483CrossRefGoogle Scholar
  89. Thomas DN, Lara RJ, Haas C, Schnack-Schiel SB, Dieckmann GS, Kattner G, Nöthig E-M, Mizdalski E (1998) Biological soup within decaying summer sea ice in the Amundsen Sea, Antarctica. In: Lizotte MP, Arrigo KR (eds) Antarctic Sea ice—biological processes, interactions and variability. American Geophysical Union (AGU), Washington, DC, pp 161–171Google Scholar
  90. Thomas DN, Kattner G, Engbrodt R, Giannelli V, Kennedy H, Haas C, Dieckmann GS (2001a) Dissolved organic matter in Antarctic sea ice. Ann Glaciol 33:297–303CrossRefGoogle Scholar
  91. Thomas DN, Kennedy H, Kattner G, Gerdes D, Gough C, Dieckmann GS (2001b) Biogeochemistry of platelet ice: its influence on particle flux under fast ice in the Weddell Sea, Antarctica. Polar Biol 24:486–496CrossRefGoogle Scholar
  92. Tison J-L, Lancelot C, Chou L, Lannuzel D, de Jong J, Schoemann V, Becquevort S, Trevena A, Verbeke V, Lorrain R, Delille B (2005) Biogéochimie de la glace de mer dans la perspective des changements climatiques, Annual Report ARC 2003–2004, pp 71Google Scholar
  93. Tison JL, Worby A, Delille B, Brabant F, Papadimitriou S, Thomas D, de Jong J, Lannuzel D, Haas C (2008) Temporal evolution of decaying summer first-year sea ice in the Western Weddell Sea, Antarctica. Deep Sea Res Part II 55:975–987CrossRefGoogle Scholar
  94. Tupas LM, Koike I, Karl DM, Holmhansen O (1994) Nitrogen-metabolism by heterotrophic bacterial assemblages in Antarctic coastal waters. Polar Biol 14:195–204CrossRefGoogle Scholar
  95. Utermölh H (1958) Zur Vervelkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38Google Scholar
  96. van Oijen T, van Leeuwe MA, Gieskes WWC (2003) Variation of particulate carbohydrate pools over time and depth in a diatom-dominated plankton community at the Antarctic Polar Front. Polar Biol 26:195–201Google Scholar
  97. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85CrossRefGoogle Scholar
  98. Volkman JK, Tanoue E (2002) Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr 58:265–279CrossRefGoogle Scholar
  99. Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML (1997) Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 61:5363–5369CrossRefGoogle Scholar
  100. Watson SW, Novitsky TJ, Quinby HL, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 33:940–946PubMedGoogle Scholar
  101. Weeks WF, Ackley SF (1982) The growth, structure, and properties of sea ice. US Army Cold Regions Research and Engineering Laboratory, Monograph 82-1Google Scholar
  102. Williams PJ (1995) Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Mar Chem 51:17–29CrossRefGoogle Scholar
  103. Yang H (1995) Distributions of free amino acids in sea and lake ice cores from Antarctica with special reference to ice biota. P NIPR Symp Polar Biol 8:114–125Google Scholar
  104. Yang H, Andrew RM, Harry B (1990) The relation of concentration of dissolved free amino acids and Phaeocystis pouchetii cell numbers in Antarctic coastal water. Antarct Res 2(4):43–49Google Scholar
  105. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytine by fluorescence. Deep Sea Res 10:221–231Google Scholar
  106. Zwally HJ, Parkinson CL, Comiso JC (1983) Variability of Antarctic Sea ice: and changes in carbon dioxide. Science 220:1005–1012PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • I. Dumont
    • 1
    Email author
  • V. Schoemann
    • 1
  • D. Lannuzel
    • 2
    • 4
  • L. Chou
    • 2
  • J.-L. Tison
    • 3
  • S. Becquevort
    • 1
  1. 1.Ecologie des Systèmes Aquatiques, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Unité de Glaciologie, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Antarctic Climate and Ecosystems CRCUniversity of TasmaniaHobartAustralia

Personalised recommendations