Polar Biology

, Volume 32, Issue 3, pp 471–479 | Cite as

An assessment of mitochondrial variation in Arctic gadoids

  • Snæbjörn PálssonEmail author
  • Thomas Källman
  • Jonas Paulsen
  • Einar Árnason
Original Paper


Climatic changes during the quaternary history in Arctic regions have shaped the genetic variation and genealogies of Arctic species. Several studies have been conducted in recent years on genetic diversity of Arctic organisms, but marine fishes are largely underrepresented in these studies. Here, we present a study on mitochondrial variation in three Arctic gadoids: Arctic cod (Arctogadus glacialis), Greenland cod (Gadus ogac), and Polar cod (Boreogadus saida). In addition, geographic variation in Polar cod is presented. The sequence variation at the mtDNA presents similar patterns as observed for other related marine fishes. Variation in these three species reflects rather different historic processes, due to colonization and climatic changes than differences in life histories. In Polar cod, a deeper genealogy is observed and variation is dependent on both latitude and longitude. The deep genealogy indicates either admixture of separate lineages or a population, which has been stable in size during alternating cold and warm periods of the pleistocene.


Arctic Gadoids mtDNA Genealogy Variation Phylogeography Climate Geographic barriers 



We want to thank several people who kindly provided samples: Jónbjörn Pálsson, Marine Research Institute, Iceland; Mike Canino, RACE Division, Seattle; Per Kannerworff, Greenland Institute of Natural Resources; Svein-Erik Fevolden and Jörgen Schau Christiansen, University of Tromsö; TUNU-I expedition; and Takashi Yanagimoto, Hokkaido National Fisheries Research Institute. The work was supported by a grant from the Icelandic Research Fund.

Supplementary material

300_2008_542_MOESM1_ESM.doc (184 kb)
Supplement (DOC 183 kb)


  1. Aboim MA, Menezes GM, Schlitt T, Rogers AD (2005) Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Mol Ecol 14:1343–1354PubMedCrossRefGoogle Scholar
  2. Akasaki T, Yanagimoto T, Yamakami K, Tomonaga H, Sato S (2006) Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (order Gadiformes) products. J Food Sci 71:190–199Google Scholar
  3. Árnason E (2004) Mitochondrial Cytochrome b DNA variation in the high-fecundity Atlantic cod: trans-Atlantic clines and shallow gene genealogy. Genetics 166:1871–1885PubMedCrossRefGoogle Scholar
  4. Árnason E, Pálsson S (1996) Mitochondrial cytochrome b DNA sequence variation of Atlantic cod Gadus morhua, from Norway. Mol Ecol 5:715–724CrossRefGoogle Scholar
  5. Bakke I, Johansen SD (2005) Molecular phylogenetics of gadidae and related gadiformes based on mitochondrial DNA sequences. Mar Biotechnol (NY) 7:61–69CrossRefGoogle Scholar
  6. Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, New York, pp 113–128CrossRefGoogle Scholar
  7. Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and palearctic fishes. Mol Ecol 7:431–452CrossRefGoogle Scholar
  8. Breines R, Ursvik A, Nymark M, Johansen SD, Coucheron DH (2008) Complete mitochondrial genome sequences of the Arctic Ocean codfishes Arctogadus glacialis and Boreogadus saida reveal oriL and tRNA gene duplications. Pol Biol. doi: 10.1007/s00300-008-0463-7
  9. Carr SM, Kivlichan DS, Pepin P, Crutcher DC (1999) Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Can J Zool 77:19–26CrossRefGoogle Scholar
  10. Christiansen JS, Fevolden SE, Karamushko OV, Karamushko LI (1998) Maternal output in polar fish reproduction. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. Springer, Berlin, pp 41–52Google Scholar
  11. Coulson MW, Marshall HD, Pepin P, Carr SM (2006) Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. Genome 49:1115–1130PubMedCrossRefGoogle Scholar
  12. Dodson JJ, Carscadden JE, Bernatchez L, Colombani F (1991) Relationship between spawning mode and phylogeny in mitochondrial DNA of North Atlantic capelin Mallotus villosus. Mar Ecol Prog Ser 66:103–113CrossRefGoogle Scholar
  13. Eldon B, Wakely J (2006) Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172:2621–2633PubMedCrossRefGoogle Scholar
  14. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  15. Fevolden S-E, Martinez I, Christiansen JS (1999) RAPD and scnDNA analyses of polar cod, Boreogadus saida (Pisces, Gadidae), in the North Atlantic. Sarsia 84:99–103Google Scholar
  16. Grant WS, Spies IB, Canino MF (2006) Biogeographic evidence of selection on mitochondrial DNA in north Pacific Walleye pollock Theragra chalcogramma. J Hered 97:571–580PubMedCrossRefGoogle Scholar
  17. Graves JE (1998) Molecular insights into the population structures of cosmopolitan marine fishes. J Hered 89:427–437CrossRefGoogle Scholar
  18. Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms. In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134Google Scholar
  19. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  20. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195PubMedCrossRefGoogle Scholar
  21. Johansen S, Bakke I (1996) The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. Mol Mar Biol Biotechnol 5:203–214PubMedGoogle Scholar
  22. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  23. Möller PR, Jordan AD, Gravlund P, Steffensen JF (2002) Phylogenetic position of the cryopelagic codfish genus Arctogadus Drjagin, 1932 based on partial mitochondrial cytochrome b sequences. Pol Biol 25:342–349Google Scholar
  24. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  25. Nielsen JG, Jensen JM (1967) Revision of the Arctic cod genus, Arctogadus (Pisces Gadidae). Med Grønl 184:1–26Google Scholar
  26. Olsen JB, Merkouris SE, Seeb JE (2002) An examination of spatial and temporal genetic variation in walleye pollock using allozyme, mitochondrial DNA, and microsatellite data—Theragra chalcogramma. Fish Bull 4:752–764Google Scholar
  27. Pálsson S, Paulsen J, Árnason E (2008) Rapid evolution of the T–P spacer in Arctogadus glacialis. Mar Biotechnol 10:270–277PubMedCrossRefGoogle Scholar
  28. Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam BC, Deans JD, Dumolin-Lapègue S, Fineschi S, Finkelday R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, König A, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Pemonge M-H, Popescu F, Slade D, Tabbener H, Taurchini D, de Vries SMG, Ziegenhagen B, Kremer A (2002) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manage 156:5–26CrossRefGoogle Scholar
  29. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  30. Ruzzante DE, Taggart CT, Cook D, Goddard S (1995) Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off New Foundland: microsatellite DNA variation and antifreeze level. Can J Fish Aquat Sci 53:634–645CrossRefGoogle Scholar
  31. Sigurgíslason H, Árnason E (2003) Extent of mitochondrial DNA sequence variation in Atlantic cod from the Faroe Islands: a resolution of gene genealogy. Heredity 91:557–564PubMedCrossRefGoogle Scholar
  32. Shields GF, Gust JR (1995) Lack of geographic structure in mitochondrial DNA sequences of Bering Sea walleye pollock, Theragra chalcogramma. Mol Mar Biol Biotechnol 4:69–82PubMedGoogle Scholar
  33. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 7:512–526Google Scholar
  34. Teletchea F, Laudet V, Hanni C (2006) Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes. Mol Phylogenet Evol 38:189–199PubMedCrossRefGoogle Scholar
  35. Ursvik A, Breines R, Christiansen JS, Fevolden S-E, Coucheron DH, Johansen SD (2007) A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. finnmarchica represent one single species. BMC Evol Biol 7:86PubMedCrossRefGoogle Scholar
  36. Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400CrossRefGoogle Scholar
  37. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Snæbjörn Pálsson
    • 1
    Email author
  • Thomas Källman
    • 1
  • Jonas Paulsen
    • 1
  • Einar Árnason
    • 1
  1. 1.Institute of BiologyUniversity of IcelandReykjavikIceland

Personalised recommendations