Polar Biology

, Volume 32, Issue 1, pp 27–33

Diet, individual specialisation and breeding of brown skuas (Catharacta antarctica lonnbergi): an investigation using stable isotopes

  • O. R. J. Anderson
  • R. A. Phillips
  • R. F. Shore
  • R. A. R. McGill
  • R. A. McDonald
  • S. Bearhop
Original Paper


The diet of brown skuas (Catharactaantarcticalonnbergi) on Bird Island, South Georgia was assessed using a combination of stable isotope analysis (SIA) and mixing model techniques. We found evidence that individual specialisation in diet of adult brown skuas was related to timing of breeding, which may reflect differences in intrinsic quality. Adults with more enriched 13C values hatched chicks earlier than those with depleted 13C values. Individuals with enriched 13C fed predominantly on Antarctic fur seal (Arctocephalusgazella) carrion and placenta while those with lower ratios appeared to rely more on burrowing petrels (e.g. Antarctic prions Pachyptila desolata). Individual foraging differences clearly influenced timing of breeding and potentially the reproductive output of breeding pairs. We confirmed that the main components of the diet of brown skuas during incubation are, in decreasing order of importance, Antarctic fur seal placenta, burrowing petrels and fur seal muscle. In addition, we identified fur seal faeces in the diet during this stage, which had not been detected previously by traditional sampling methods. Finally we identified a correlation in δ13C values between pair members, attributable to the influence of courtship feeding of females by males, or assortative mating according to foraging preference or intrinsic quality.


Diet Foraging specialisation Mixing models Scavenging 


  1. Arnold JM, Hatch JJ, Nisbet ICT (2004) Seasonal declines in reproductive success of the common tern Sterna hirundo: timing or parental quality? J Avian Biol 35:33–45CrossRefGoogle Scholar
  2. Arnold JM, Hatch JJ, Nisbet ICT (2006) Effects of egg size, parental quality and hatch-date on growth and survival of common tern Sterna hirundo chicks. Ibis 148:98–105CrossRefGoogle Scholar
  3. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458PubMedCrossRefGoogle Scholar
  4. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164CrossRefGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  6. Boyd IL (1993) Pup production and distribution of breeding Antarctic fur seals (Arctocephalus gazelle) at South Georgia. Antarct Sci 5:17–24CrossRefGoogle Scholar
  7. Brooke M de L, Keith D, Røv N (1999) Exploitation of inland-breeding Antarctic petrels by south polar skuas. Oecologia 121:25–31Google Scholar
  8. Catry P, Ratcliffe N, Furness RW (1998) The influence of hatching date on different life-history stages of great skuas Catharacta skua. J Avian Biol 29:299–304CrossRefGoogle Scholar
  9. Chastel O, Weimerskirch H, Jouventin P (1995) Body condition and seabird reproductive performance: a study of three petrel species. Ecology 76:2240–2246CrossRefGoogle Scholar
  10. Cherel Y, Phillips RA, Hobson KA, McGill R (2006) Stable isotope evidence of diverse species-specific and individual wintering strategies in seabirds. Biol Lett 2:301–303PubMedCrossRefGoogle Scholar
  11. Coulson JC (1963) Egg size and shape in the kittiwake (Rissa tridactyla) and their use in estimating age composition of populations. Proc Zool Soc Lond 140:211–227Google Scholar
  12. Croxall JP, Prince PA (1980) Food, feeding ecology and ecological segregation of seabirds at South Georgia. Biol J Linn Soc 14:103–131CrossRefGoogle Scholar
  13. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Act 42:495–506CrossRefGoogle Scholar
  14. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Act 45:341–351CrossRefGoogle Scholar
  15. González-Solís J, Oro D, Pedrocchi V (1997) Bias associated with diet samples in Audouin’s gulls. Condor 99:773–779CrossRefGoogle Scholar
  16. Hahn S, Peter H-U (2003) Feeding territoriality and the reproductive consequences in brown skuas Catharacta antarctica lonnbergi. Polar Biol 26:552–559CrossRefGoogle Scholar
  17. Hobson KA, Clark RW (1992) Assessing avian diets using stable isotopes. I. Turnover of carbon-13. Condor 94:181–188CrossRefGoogle Scholar
  18. Hobson KA, Welch HE (1992) Determination of trophic relationships within a high arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18CrossRefGoogle Scholar
  19. Irvine LG, Clarke JR, Kerry KR (2000) Low breeding success of the Adelie penguin at Bechervaise Island in the 1998/99 season. CCAMLR Sci 7:151–167Google Scholar
  20. Lepage D, Gauthier G, Menu S (2000) Reproductive consequences of egg-laying decisions in snow geese. J Anim Ecol 69:414–427CrossRefGoogle Scholar
  21. Moncorps S, Chapuis J-L, Haubreux D, Bretagnolle V (1998) Diet of the brown skua Catharacta skua lonnbergi on the Kerguelen archipelago: comparisons between techniques and between islands. Polar Biol 19:9–16CrossRefGoogle Scholar
  22. Pezzo F, Olmastroni S, Corsolini S, Focardi S (2001) Factors affecting the breeding success of the south polar skua Catharacta maccormicki Edmonson Point, Victoria Land, Antarctica. Polar Biol 24:389–393CrossRefGoogle Scholar
  23. Phillips RA, Furness RW (1998) Measurement of heritability of hatching date and chick condition in Parasitic Jaegers. Can J Zool 76:2290–2294CrossRefGoogle Scholar
  24. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269PubMedCrossRefGoogle Scholar
  25. Phillips RA, Caldow RWG, Furness RW (1996) The influence of food availability on the breeding effort and reproductive success of Arctic skuas Stercorarius parasiticus. Ibis 138:410–419CrossRefGoogle Scholar
  26. Phillips RA, Furness RW, Stewart FM (1998) The influence of territory density on the vulnerability of Arctic skuas Stercorarius parasiticus to predation. Biol Conserv 86:21–31CrossRefGoogle Scholar
  27. Phillips RA, Dawson DA, Ross DJ (2002) Mating patterns and reversed size dimorphism in Southern skuas (Stercorarius skua lonnbergi). Auk 119:858–863CrossRefGoogle Scholar
  28. Phillips RA, Phalan B, Forster IP (2004) Diet and long-term changes in population size and productivity of brown skuas (Catharacta antarctica lonnbergi) at Bird Island, South Georgia. Polar Biol 27:555–561CrossRefGoogle Scholar
  29. Phillips RA, Catry P, Silk JRD, Bearhop S, McGill R, Afanasyev V, Strange IJ (2007) Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from loggers and isotopes. Mar Ecol Prog Ser 345:281–291CrossRefGoogle Scholar
  30. Reinhardt K, Hahn S, Peter H-U, Wemhoff H (2000) A review of the diets of Southern Hemisphere skuas. Mar Ornithol 28:7–19Google Scholar
  31. Ryan PG, Moloney CL (1991) Prey selection and temporal variation in the diet of sub-antarctic skuas at Inaccessible Island, Tristan da Cunha. Ostrich 62:52–58Google Scholar
  32. Spear LB (1993) Dynamics and effect of western gulls feeding in a colony of guillemots and Brant’s cormorants. J Anim Ecol 62:399–414CrossRefGoogle Scholar
  33. Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, Passey B, West A, Cerling T, Dearing D, Ehleringer J (2003) Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. Intl J Osteoarchaeol 13:80–87CrossRefGoogle Scholar
  34. Tveraa T, Sæther B-E, Aanes R, Erikstad KE (1998) Regulation of food provisioning in the Antarctic petrel; the importance of parental body condition and chick body mass. J Anim Ecol 67:699–704CrossRefGoogle Scholar
  35. Votier SC, Bearhop S, MacCormick A, Ratcliffe N, Furness RW (2003) Assessing the diet of great skuas Catharacta skua using five different techniques. Polar Biol 26:20–26Google Scholar
  36. Votier SC, Bearhop S, Ratcliffe N, Furness RW (2004) Reproductive consequences for great skuas specializing as seabird predators. Condor 106:275–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • O. R. J. Anderson
    • 1
  • R. A. Phillips
    • 2
  • R. F. Shore
    • 3
  • R. A. R. McGill
    • 4
  • R. A. McDonald
    • 5
  • S. Bearhop
    • 1
    • 6
  1. 1.School of Biological Sciences, MBCQueen’s University BelfastBelfastUK
  2. 2.British Antarctic SurveyNatural Environmental Research CouncilCambridgeUK
  3. 3.Centre for Ecology and HydrologyLancaster Environment CentreLancasterUK
  4. 4.Scottish Universities Environmental Research CentreEast KilbrideUK
  5. 5.Central Science LaboratoryYorkUK
  6. 6.Centre for Ecology and Conservation, School of BiosciencesUniversity of ExeterPenrynUK

Personalised recommendations