Polar Biology

, 31:1453 | Cite as

Soil properties of an Antarctic inland site: implications for ecosystem development

  • Andreas Engelen
  • Peter Convey
  • Dominic A. Hodgson
  • M. Roger Worland
  • Sieglinde Ott
Original Paper

Abstract

Inland Antarctic nunataks typically have simple physically weathered soils and limited ecosystem complexity. In this paper we present quantitative measurements of soil physical and chemical properties at one Antarctic nunatak. We measured pH, grain size, field capacity, soil organic carbon, phosphate, nitrate, ammonium and the cations magnesium, calcium and potassium along two transects. The data obtained indicated that very low levels of nutrients were present/available to biota, and that liquid water was absent, at least from the surface depths of soil, except during periods of active snow melt. Consequently, biological activity is severely limited. We conclude that, due to the climatic and microclimatic conditions at this location, the development of biological communities and soils is maintained in an extremely simple but still apparently stable ‘quasi climax’ state. Increased soil development and biological complexity can be expected if the contemporary rapid regional warming in the Antarctic Peninsula region continues.

Keywords

Nunatak Polygon soil Soil parameters Nutrients Ecosystem 

Notes

Acknowledgments

We thank the BAS field assistants Neil Stevenson and Robin Jarvis for their invaluable technical support in the field. The British Antarctic Survey and its staff at Rothera Research Station are thanked for their support. This study was financially supported by the Deutsche Forschungsgemeinschaft (Ot 96/10–1/2) and the Düsseldorf Entrepreneurs Foundation, and also forms an output of the BAS BIOFLAME, CACHE and SCAR EBA scientific programmes. The results are included in the doctoral thesis of A.E.

References

  1. Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol 26:396–404Google Scholar
  2. Beyer L, Blume HP, Bölter M, Kappen L, Kuhn D, Seppelt RD (2002) Soil ecology in relation to plant patterns. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 375–391Google Scholar
  3. Beyer L, Bockheim JG, Campbell IB, Claridge GG (1999) Genesis, properties and sensitivity of Antarctic gelisols. Antarct Sci 11:387–398CrossRefGoogle Scholar
  4. Blume HP, Bölter M (1993) Soils of Casey Station, Antarctica. In: Gilichinski D (ed) Proceedings of 1st international symposium on cryopedol, Pushchino, Inst t Soil Sci Photosynth, Pushchino, pp 96–103Google Scholar
  5. Blume HP, Bölter M (1996) Wechselwirkungen zwischen Boden- und Vegetationsentwicklung in der Kontinentalen Antarktis. Verh Ges Ökol 25:25–34Google Scholar
  6. Blume HP, Kuhn D, Bölter M (2002) Soils and soilscapes. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 91–113Google Scholar
  7. Bockheim JG, Ugolini FC (1990) A review of pedogenetic zonation in well-drained soils of the southern circumpolar region. Quad Res 34:47–66CrossRefGoogle Scholar
  8. Bölter M, Beyer L, Stonehouse B (2002) Antarctic coastal landscapes: characteristics, ecology and research. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 5–15Google Scholar
  9. Brinkmann M, Pearce D, Convey P, Ott S (2007) The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biol 30:1505–1511CrossRefGoogle Scholar
  10. British Antarctic Survey (2004) Antarctica, 1:10 000 000 scale map. BAS (Misc) 11. British Antarctic Survey, CambridgeGoogle Scholar
  11. Campbell IB, Claridge GG (1987) Antarctica: soils. Weathering processes and environments. Elsevier, New YorkGoogle Scholar
  12. Campbell IB, Claridge GG, Balks MR, Campbell DI (1997) Moisture content in the soils of Mc Murdo Sound and Dry Valley region of Antarctica. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Blakema, Rotterdam, pp 61–76Google Scholar
  13. Campbell IB, Claridge GG, Balks MR, Campbell DI (1998) The soil environment of the McMurdo Dry Valleys, Antarctica. In: Priscu J (ed.) Ecosystem Dynamics in a Polar Desert: the Mc Murdo Dry Valleys. American Geophysical Union Antarctic Research Series, vol 72. pp 297–332Google Scholar
  14. Chambers MG (1967) Investigations of patterned ground at Signy Island, South Orkney Islands: III. Miniature patterns, frost heaving and general conclusions. Brit Antact Surv B 12:1–22Google Scholar
  15. Convey P, Smith RIL (1997) The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island, maritime Antarctic. Antarct Sci 9:12–26CrossRefGoogle Scholar
  16. Davey MC, Rothery P (1992) Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during later summer. Polar Biol 12:595–602CrossRefGoogle Scholar
  17. Ellis-Evens JC (1997) Micro-scale distribution of photoautotropic micro-organismsin relation to light, temperature and moisture in Antarctic lithosols. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Blakema, Rotterdam, pp 89–102Google Scholar
  18. Fabiszewski J, Wojtun B (1993) Peat-forming vegetation. In: Rakusa-Suszczzewski S (ed) The maritime Antarctic caostal ecosystem of Admirality Bay. Polish Academy of Science, Warsaw, pp 189–195Google Scholar
  19. Freckman DW, Virginia RA (1998) Soil biodiversity and community structure in the Mc Murdo Dry Valleys, Antarctica. In: Priscu J (ed) Ecosystem dynamics in a Polar Desert: the Mc Murdo dry Valleys. American Geophysical Union Antarctic Research Series, vol 72, pp 323–335Google Scholar
  20. Hall KJ, Walton DWH (1992) Rock weathering, soil development and colonisation under a changing climate. Philos Trans R Soc London Ser B 338:269–277CrossRefGoogle Scholar
  21. Hoffmann G (1991) Die Untersuchung der Böden. VDLUFA-Methodenbuch Band I, VDLUFA-Verlag, DarmstadtGoogle Scholar
  22. Holdgate MW (1970) Introduction to Part VII. Vegetation. In: Holdgate MW (ed) Antarctic ecology. Academic Press, London, pp 729–732Google Scholar
  23. Howe J, Francis JE (2005) Metamorphosed palaeosols associated with Cretaceous fossil forests, Alexander Island, Antarctica. J Geol Soc 162:951–957CrossRefGoogle Scholar
  24. Kanda H, Ohtani S, Imura S (2002) Plant communities at Dronning Maud Land. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 249–264Google Scholar
  25. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic Alpine Res 25:308–315CrossRefGoogle Scholar
  26. Kessler MA, Werner BT (2003) Self-organisation of sorted patterned ground. Science 299:380–383PubMedCrossRefGoogle Scholar
  27. Köhn M (1928) Korngrößenbestimmung vermittels Pipettanalyse. Tonindustrie-Zeitung 53:729–731Google Scholar
  28. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microb 5963–5972Google Scholar
  29. Leser H (1977) Feld- und Labormethoden der Geomorphologie. de Gruyter, BerlinGoogle Scholar
  30. Nichols GJ, Cantrill DJ (2002) Tectonic and climatic controls on a Mezozoic forearc basin succession, Alexander Island, Antarctica. Geol Mag 139:313–330CrossRefGoogle Scholar
  31. Olech M (2002) Plant Communities on King George Island. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 215–231Google Scholar
  32. Poelt J, Mayrhofer H (1988) Über Cyanotrophie bei Flechten. Pl Syst Evol 158:265–281CrossRefGoogle Scholar
  33. Romeike J (2002) Mikroklima und Musterbildungsprozesse—Komplexe Interaktionen in der Flechtenvegetation entlang eines Transekts der maritimen Antarktis. PhD Thesis. Heinrich-Heine-Universität, Mathematisch-Naturwissenschaftliche Fakultät, DüsseldorfGoogle Scholar
  34. Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde. Springer, Berlin HeidelbergGoogle Scholar
  35. Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphats in Böden. Pflanzenernährung und Bodenkunde 123:48–63CrossRefGoogle Scholar
  36. Seppelt R (2002) Plant communities at Wilkes Land. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecological studies, vol 154. Springer, Berlin, pp 233–248Google Scholar
  37. Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 61–162Google Scholar
  38. Smith RIL (1988) Bryophyte oases in ablation valleys on Alexander Island, Antarctica. Bryologist 91:45–50CrossRefGoogle Scholar
  39. Smith RIL (1993) Dry coastal ecosystems of Antarctica. In: van der Maarle E (ed) Ecosystems of the world 2A, dry coastal ecosystems. Polar regions and Europe. Elsevier, Amsterdam, pp 51–71Google Scholar
  40. Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin HeidelbergGoogle Scholar
  41. Walton DWH (1984) The terrestrial environment. In: Laws RM (ed) Antarctic ecology. Academic Press, London, pp 1–60Google Scholar
  42. Washburn AL (1956) Classification of patterned ground and review of suggested origins. GSA Bull 67:823–866CrossRefGoogle Scholar
  43. Wynn-Williams DD (1993) Microbial processes and the initial stabilisation of fellfield soil. In: Miles J, Walton DWH (eds) Primary Succession on Land. Blackwell, Oxford, pp 17–32Google Scholar
  44. Wynn-Williams DD, Russel NC, Edwards HGM (1997) Moisture and habitat structure as regulators for microalgalcolonists in diverse Antarctic terrestrial habitats. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Blakema, Rotterdam, pp 77–88Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andreas Engelen
    • 1
  • Peter Convey
    • 2
  • Dominic A. Hodgson
    • 2
  • M. Roger Worland
    • 2
  • Sieglinde Ott
    • 1
  1. 1.Institute of BotanyHeinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations