Polar Biology

, Volume 31, Issue 6, pp 759–763 | Cite as

Antibiotic susceptibility of faecal bacteria in Antarctic penguins

  • Jonas Bonnedahl
  • Björn Olsen
  • Jonas Waldenström
  • Tina Broman
  • Jari Jalava
  • Pentti Huovinen
  • Monica Österblad
Short Note

Abstract

Faecal bacteria from 49 Gentoo penguins on the Antarctic Peninsula were identified by biochemical methods and sequencing, and tested for antibiotic susceptibility using agar dilution. Of the 42 Enterobacteriaceae isolates found, 39 belonged to the genus Edwardsiella. All isolates were susceptible to the 17 antibiotics tested. This implies that antibiotic selection pressure is a prerequisite to a high prevalence of antibiotic resistance, and in the absence of contact with human activities, antibiotic resistance in Enterobacteriaceae remains undetectable.

Keywords

Enterobacteriaceae Antimicrobial resistance Edwardsiella Antarctic Peninsula Pygoscelis papua Animal 

Notes

Acknowledgments

This work was financially supported by the Medical Faculty of Umeå University, The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning FORMAS (2003–1146) and by logistical help from the Swedish Polar Research Secretariat.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Aoki T, Arai T, Egusa S (1977) Detection of R plasmids in naturally occurring fish-pathogenic bacteria, Edwardsiella tarda. Microbiol Immunol 21:77–83PubMedGoogle Scholar
  3. Aoki T, Takahashi A (1987) Class D tetracycline resistance determinants of R plasmids from the fish pathogens Aeromonas hydrophila, Edwardsiella tarda, and Pasteurella piscicida. Antimicrob Agents Chemother 31:1278–1280PubMedGoogle Scholar
  4. Baquero F, Blázquez (1997) Evolution of antibiotic resistance. Trends Ecol Evol 12:482–487CrossRefGoogle Scholar
  5. Bonnedahl J, Broman T, Waldenstrom J, Palmgren H, Niskanen T, Olsen B (2005) In search of human-associated bacterial pathogens in Antarctic wildlife: report from six penguin colonies regularly visited by tourists. Ambio 34:430–432PubMedCrossRefGoogle Scholar
  6. Bruinsma N, Stobberingh E, de Smet P, van den Bogaard A (2003) Antibiotic use and the prevalence of antibiotic resistance in bacteria from healthy volunteers in the dutch community. Infection 31:9–14PubMedCrossRefGoogle Scholar
  7. Caprioli A, Donelli G, Falbo V, Passi C, Pagano A, Mantovani A (1991) Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the alpine marmot. J Wildl Dis 27:324–327PubMedGoogle Scholar
  8. Clark R, Lister P, Janda J (1991) In vitro susceptibilities of Edwardsiella tarda to 22 antibiotics and antibiotic-beta-lactamase-inhibitor agents. Diagn Microbiol Infect Dis 14:173–175PubMedCrossRefGoogle Scholar
  9. Cole D, Drum DJ, Stalknecht DE, White DG, Lee MD, Ayers S, Sobsey M, Maurer JJ (2005) Free-living Canada geese and antimicrobial resistance. Emerg Infect Dis 11:935–938PubMedGoogle Scholar
  10. DePaola A, Peeler JT, Rodrick GE (1995) Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Appl Environ Microbiol 61:2335–2340PubMedGoogle Scholar
  11. Gilliver M, Bennett M, Begon M, Hazel S, Hart C (1999) Antibiotic resistance found in wild rodents. Nature 401:233–234PubMedCrossRefGoogle Scholar
  12. Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586PubMedCrossRefGoogle Scholar
  13. Janda J, Abbott S (2006) The enterobacteria, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  14. Kinjo T, Minamoto N, Sugiyama M, Sugiyama Y (1992) Comparison of antimicrobial resistant Escherichia coli in wild and captive Japanese serows. J Vet Med Sci 54:821–827PubMedGoogle Scholar
  15. Kotilainen P, Jalava J, Meurman O, Lehtonen OP, Rintala E, Seppala OP, Eerola E, Nikkari S (1998) Diagnosis of meningococcal meningitis by broad-range bacterial PCR with cerebrospinal fluid. J Clin Microbiol 36:2205–2209PubMedGoogle Scholar
  16. Livermore DM, Warner M, Hall LM, Enne VI, Projan SJ, Dunman PM, Wooster SL, Harrison G (2001) Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. Environ Microbiol 3:658–661PubMedCrossRefGoogle Scholar
  17. McBee RH (1960) Intestinal flora of some Antarctic birds and mammals. J Bacteriol 79:311–312PubMedGoogle Scholar
  18. National Committe for Clinical Laboratory Standards (ed) (2001) Performance standards for antimicrobial susceptibility testing. Eleventh informational supplementGoogle Scholar
  19. Österblad M, Hakanen A, Manninen R, Leistevuo T, Peltonen R, Meurman O, Huovinen P, Kotilainen P (2000) A between-species comparison of antimicrobial resistance in enterobacteria in fecal flora. Antimicrob Agents Chemother 44:1479–1484PubMedCrossRefGoogle Scholar
  20. Österblad M, Norrdahl K, Korpimäki E, Huovinen P (2001) Antibiotic resistance: how wild are wild mammals? Nature 409:37–38PubMedCrossRefGoogle Scholar
  21. Reger P, Mockler D, Miller M (1993) Comparison of antimicrobial susceptibility, beta-lactamase production, plasmid analysis and serum bactericidal activity in Edwardsiella tarda, E. ictaluri and E. hoshinae. J Med Microbiol 39:273–281PubMedCrossRefGoogle Scholar
  22. Reinhardt J, Fowlston S, Jones J, George W (1985) Comparative in vitro activities of selected antimicrobial agents against Edwardsiella tarda. Antimicrob Agents Chemother 27:966–967PubMedGoogle Scholar
  23. Rolland RM, Hausfater G, Marshall B, Levy SB (1985) Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl Environ Microbiol 49:791–794PubMedGoogle Scholar
  24. Sayah RS, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71:1394–1404PubMedCrossRefGoogle Scholar
  25. Seppälä H, Klaukka T, Vuopio-Varkila J, Muotiala A, Helenius H, Lager K, Huovinen P, the Finnish Study Group for Antimicrobial Resistance (1997) The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N Engl J Med 337:441–446PubMedCrossRefGoogle Scholar
  26. Sherley M, Gordon DM, Collignon PJ (2000) Variations in antibiotic resistance profile in Enterobacteriaceae isolated from wild Australian mammals. Environ Microbiol 2:620–631PubMedCrossRefGoogle Scholar
  27. Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P, Picard B, Denamur E (2006) Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J Antimicrob Chemother 57:1215–1219PubMedCrossRefGoogle Scholar
  28. Soucek Z, Mushin R (1970) Gastrointestinal bacteria of certain Antarctic birds and mammals. Appl Microbiol 20:561–566PubMedGoogle Scholar
  29. Souza V, Rocha M, Valera A, Eguiarte LE (1999) Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol 65:3373–3385PubMedGoogle Scholar
  30. Stock I, Wiedemann B (2001) Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri and E. hoshinae. Antimicrob Agents Chemother 45:2245–2255PubMedCrossRefGoogle Scholar
  31. Sunde M (2005) Class I integron with a group II intron detected in an Escherichia coli strain from a free-range reindeer. Antimicrob Agents Chemother 49:2512–2514PubMedCrossRefGoogle Scholar
  32. Waltman WD, Shotts EB (1986) Antimicrobial susceptibility of Edwardsiella tarda from the United States and Taiwan. Vet Microbiol 12:277–282PubMedCrossRefGoogle Scholar
  33. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  34. Waturangi DE, Suwanto A, Schwarz S, Erdelen W (2003) Identification of class 1 integrons-associated gene cassettes in Escherichia coli isolated from Varanus spp. in Indonesia. J Antimicrob Chemother 51:175–177PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jonas Bonnedahl
    • 3
    • 4
  • Björn Olsen
    • 4
    • 5
  • Jonas Waldenström
    • 5
  • Tina Broman
    • 6
  • Jari Jalava
    • 1
  • Pentti Huovinen
    • 2
  • Monica Österblad
    • 1
  1. 1.Department of Bacterial and Inflammatory Diseases, Laboratory of Human Microbial EcologyNational Public Health InstituteTurkuFinland
  2. 2.Antimicrobial Research LaboratoryNational Public Health InstituteTurkuFinland
  3. 3.Department of Microbiology and Hospital hygieneKalmar County HospitalKalmarSweden
  4. 4.Section of Infectious Diseases, Department of Medical SciencesUppsala University HospitalUppsalaSweden
  5. 5.Section for Zoonotic Ecology and Epidemiology, Department of Biology and Environmental SciencesKalmar UniversityKalmarSweden
  6. 6.CBRN Defence and SecuritySwedish Defence Research AgencyUmeåSweden

Personalised recommendations